Journal Home > Volume 11 , Issue 1

Producing environmentally stable monolayers and few-layers of hafnium disulphide (HfS2) with a high yield to reveal its unlocked electronic and optoelectronic applications is still a challenge. HfS2 is a layered two-dimensional material of group-IV transition metal dichalcogenides. For the first time, we demonstrate a simple and cost-effective method to grow layered belt-like nanocrystals of HfS2 with a notably large interlayer spacing followed by their chemical exfoliation. Various microscopic and spectroscopic techniques confirm that these as-grown crystals exfoliate into single or multiple layers in a few minutes using solvent assisted ultrasonification method in N-cyclohexyl-2-pyrrolidone. The exfoliated nanosheets of HfS2 exhibit an indirect bandgap of 1.3 eV with high stability against surface degradation. Furthermore, we demonstrate that these nanosheets hold potential for electronic applications by fabricating a field-effect transistor based on few-layered HfS2, exhibiting a field-effect mobility of 0.95 cm2/(V·s) with a high on/off current modulation ratio of 10, 000 in ambient conditions. The method is scalable and has a potential significance for both academic and industrial purposes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-yield synthesis and liquid-exfoliation of two-dimensional belt-like hafnium disulphide

Show Author's information Harneet Kaur1,2( )Sandeep Yadav3,§Avanish K. Srivastava1Nidhi Singh1Shyama Rath4Jörg J. Schneider3,§Om P. Sinha5Ritu Srivastava1( )
National Physical LaboratoryCouncil of Scientific and Industrial ResearchDr. K. S. Krishnan RoadNew Delhi110012India
Academy of Scientific and Innovative ResearchNPLNew Delhi110012India
Technische Universität DarmstadtEduard-Zintl-Institut für Anorganische und Physikalische Chemie L2 I 05 117Alarich-Weiss-Str 1264287Darmstadt, Germany
Department of Physics and AstrophysicsUniversity of DelhiDelhi110007India
Amity Institute of NanotechnologyAmity University UPSector 125NoidaUttar Pradesh201313India

§ Sandeep Yadav and Jörg J. Schneider contributed equally to this work.

Abstract

Producing environmentally stable monolayers and few-layers of hafnium disulphide (HfS2) with a high yield to reveal its unlocked electronic and optoelectronic applications is still a challenge. HfS2 is a layered two-dimensional material of group-IV transition metal dichalcogenides. For the first time, we demonstrate a simple and cost-effective method to grow layered belt-like nanocrystals of HfS2 with a notably large interlayer spacing followed by their chemical exfoliation. Various microscopic and spectroscopic techniques confirm that these as-grown crystals exfoliate into single or multiple layers in a few minutes using solvent assisted ultrasonification method in N-cyclohexyl-2-pyrrolidone. The exfoliated nanosheets of HfS2 exhibit an indirect bandgap of 1.3 eV with high stability against surface degradation. Furthermore, we demonstrate that these nanosheets hold potential for electronic applications by fabricating a field-effect transistor based on few-layered HfS2, exhibiting a field-effect mobility of 0.95 cm2/(V·s) with a high on/off current modulation ratio of 10, 000 in ambient conditions. The method is scalable and has a potential significance for both academic and industrial purposes.

Keywords: two-dimensional materials, hafnium disulphide, nano-crystals, liquid-phase exfoliation, environment-stability, field-effect transistor

References(41)

1

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

2

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphenelike two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

3

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

4

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

5

Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664–3670.

6

Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

7

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

8

Liu, Y. X.; Dong, X. C.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307.

9

Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M. A.; Kim, S. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 2014, 4, 7352.

10

Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014, 8, 3992–4003.

11

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

12

Pacilé, D.; Meyer, J. C.; Girit, Ç. Ö.; Zettl, A. The twodimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 2008, 29, 133107.

13

Lv, R. T.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56–64.

14

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

15

Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-Ⅵ dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

16

Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102–1120.

17

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Twodimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

18

Xu, K.; Wang, Z. X.; Wang, F.; Huang, Y.; Wang, F. M.; Yin, L.; Jiang, C.; He, J. Ultrasensitive phototransistors based on few-layered HfS2. Adv. Mater. 2015, 27, 7881–7887.

19

Kanazawa, T.; Amemiya, T.; Ishikawa, A.; Upadhyaya, V.; Tsuruta, K.; Tanaka, T.; Miyamoto, Y. Few-layer HfS2 transistors. Sci. Rep. 2016, 6, 22277.

20

Xu, K.; Huang, Y.; Chen, B.; Xia, Y.; Lei, W.; Wang, Z. X.; Wang, Q. S.; Wang, F.; Yin, L.; He, J. Toward highperformance top-gate ultrathin HfS2 field-effect transistors by interface engineering. Small 2016, 12, 3106–3111.

21

Zheng, B. J.; Chen, Y. F.; Wang, Z. G.; Qi, F.; Huang, Z. S.; Hao, X.; Li, P. J.; Zhang, W. L.; Li, Y. R. Vertically oriented few-layered HfS2 nanosheets: Growth mechanism and optical properties. 2D Mater. 2016, 3, 035024.

22

Chae, S. H.; Jin, Y.; Kim, T. S.; Chung, D. S.; Na, H.; Nam, H.; Kim, H.; Perello, D. J.; Jeong, H. Y.; Ly, T. H. et al. Oxidation effect in octahedral hafnium disulfide thin film. ACS Nano 2016, 10, 1309–1316.

23

Su, Y. R.; Lu, B.; Xie, Y. Z.; Ma, Z. W.; Liu, L. X.; Zhao, H. T.; Zhang, J.; Duan, H. G.; Zhang, H. L.; Li, J. et al. Temperature effect on electrospinning of nanobelts: The case of hafnium oxide. Nanotechnology 2011, 22, 285609.

24

Gao, Q. X.; Wang, X. F.; Wu, X. C.; Tao, Y. R.; Zhu, J. J. Mesoporous zirconia nanobelts: Preparation, characterization and applications in catalytical methane combustion. Micropor. Mesopor. Mater. 2011, 143, 333–340.

25

Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419.

26

Osada, M.; Sasaki, T. Exfoliated oxide nanosheets: New solution to nanoelectronics. J. Mater. Chem. 2009, 19, 2503–2511.

27

Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093–11097.

28

Dines, M. B. Lithium intercalation via n-butyllithium of the layered transition metal dichalcogenides. Mater. Res. Bull. 1975, 10, 287–291.

29

Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O'Brien, P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 2014, 50, 13338–13341.

30

Kaur, H.; Yadav, S.; Srivastava, A. K.; Singh, N.; Schneider, J. J.; Sinha, O. P.; Agrawal, V. V.; Srivastava, R. Large area fabrication of semiconducting phosphorene by Langmuir–Blodgett assembly. Sci. Rep. 2016, 6, 34095.

31

Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

32

Kaur, H.; Agrawal, V. V.; Srivastava, R. Unique morphologies of molybdenum disulphide: Sheets, diffusion limited cluster aggregates and fractals, by Langmuir–Blodgett assembly for advanced electronics. arXiv preprint, arXiv: 1701.02476, 2017.

33

Li, J. T.; Naiini, M. M.; Vaziri, S.; Lemme, M. C.; Östling, M. Inkjet printing of MoS2. Adv. Funct. Mater. 2014, 24, 6524–6531.

34

Wang, T. Y.; Zhu, R. Z.; Zhuo, J. Q.; Zhu, Z. W.; Shao, Y. H.; Li, M. X. Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors. Anal. Chem. 2014, 86, 12064–12069.

35

Reynolds, K. J.; Barker, J. A.; Greenham, N. C.; Friend, R. H.; Frey, G. L. Inorganic solution-processed hole-injecting and electron-blocking layers in polymer light-emitting diodes. J. Appl. Phys. 2002, 92, 7556–7563.

36

Gu, X.; Cui, W.; Li, H.; Wu, Z. W.; Zeng, Z. Y.; Lee, S. T.; Zhang, H.; Sun, B. Q. A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells. Adv. Energy Mater. 2013, 3, 1262–1268.

37

Greenaway, D. L.; Nitsche, R. Preparation and optical properties of group Ⅳ–Ⅵ2 chalcogenides having the CdI2 structure. J. Phys. Chem. Solids 1965, 26, 1445–1458.

38

Roubi, L.; Carlone, C. Resonance Raman spectrum of HfS2 and ZrS2. Phys. Rev. B 1988, 37, 6808–6812.

39

Venugopal, R.; Lin, P. I.; Liu, C. C.; Chen, Y. T. Surfaceenhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets. J. Amer. Chem. Soc. 2005, 127, 11262–11268.

40

Osada, K.; Bae, S.; Tanaka, M.; Raebiger, H.; Shudo, K.; Suzuki, T. Phonon properties of few-layer crystals of quasione-dimensional ZrS3 and ZrSe3. J. Phys. Chem. C 2016, 120, 4653–4659.

41

Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.

File
nr-11-1-343_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 February 2017
Revised: 29 March 2017
Accepted: 18 April 2017
Published: 03 August 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

Work of S. Y. and J. J. S. was supported by the LOEWE project STT by the state of Hesse at Technische Universitat Darmstadt. Exfoliation, its characterization and fabrication of devices were sponsored by UGCSRF, UGC-DAE CSR-IC/CRS-77 Indore, DST and CSIR-TAPSUN NWP-55 project.

Return