Journal Home > Volume 11 , Issue 1

The properties and applications of boron nitride (BN) nanosheets are complementary to those of graphene, with advantages in chemical and thermal stability. Biocompatibility is an important property for future biomedical applications but has not been investigated experimentally. We studied the biocompatibility of BN nanosheets of different sizes and compared it with that of BN nanoparticles in osteoblast-like cells (SaOS2). Our results showed that the biocompatibility of BN nanomaterials depends on their size, shape, structure, and surface chemical properties. Electron spin resonance measurement revealed that unsaturated B atoms located at the nanosheet edges or on the particle surface are responsible for the cell death.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Biocompatibility of boron nitride nanosheets

Show Author's information Srikanth Mateti1Cynthia S. Wong1Zhen Liu2Wenrong Yang2Yuncang Li3Lu Hua Li1Ying Chen1( )
Institute for Frontier MaterialsDeakin UniversityWaurn PondsVictoria3216Australia
Centre for Chemistry and BiotechnologySchool of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoria3216Australia
School of EngineeringRMIT UniversityMelbourneVictoria3001Australia

Abstract

The properties and applications of boron nitride (BN) nanosheets are complementary to those of graphene, with advantages in chemical and thermal stability. Biocompatibility is an important property for future biomedical applications but has not been investigated experimentally. We studied the biocompatibility of BN nanosheets of different sizes and compared it with that of BN nanoparticles in osteoblast-like cells (SaOS2). Our results showed that the biocompatibility of BN nanomaterials depends on their size, shape, structure, and surface chemical properties. Electron spin resonance measurement revealed that unsaturated B atoms located at the nanosheet edges or on the particle surface are responsible for the cell death.

Keywords: boron nitride, biocompatibility, nanosheet

References(39)

1

Liu, Z.; Cai, W. B.; He, L.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.

2

Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85–120.

3

Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012, 57, 1061–1105.

4

Bai, H.; Li, C.; Shi, G. Q. Functional composite materials based on chemically converted graphene. Adv. Mater. 2011, 23, 1089–1115.

5

Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

6

Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980.

7

Pinto, A. M.; Gonçalves, I. C.; Magalhães, F. D. Graphenebased materials biocompatibility: A review. Colloids Surf. B 2013, 111, 188–202.

8

Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601.

9

Zhou, R. H.; Gao, H. J. Cytotoxicity of graphene: Recent advances and future perspective. Wiley Interdiscip. Rev. : Nanomed. Nanobiotechnol. 2014, 6, 452–474.

10

Sasidharan, A.; Panchakarla, L. S.; Chandran, P.; Menon, D.; Nair, S.; Rao, C. N. R.; Koyakutty, M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 2011, 3, 2461–2464.

11

Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001.

12

Yang, X.; Li, J.; Liang, T.; Ma, C. Y.; Zhang, Y. Y.; Chen, H. Z.; Hanagata, N.; Su, H. X.; Xu, M. S. Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 2014, 6, 10126–10133.

13

Huang, K. J.; Liu, Y. J.; Wang, H. B.; Gan, T.; Liu, Y. M.; Wang, L. L. Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide–graphene composites and gold nanoparticles. Sensor. Actuat. B-Chem. 2014, 191, 828–836.

14

Huang, K. J.; Wang, L.; Liu, Y. J.; Gan, T.; Liu, Y. M.; Wang, L. L.; Fan, Y. Synthesis and electrochemical performances of layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochim. Acta 2013, 107, 379–387.

15

Yuan, Y. X.; Li, R. Q.; Liu, Z. H. Establishing water-soluble layered WS2 nanosheet as a platform for biosensing. Anal. Chem. 2014, 86, 3610–3615.

16

Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with pegylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.

17

Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893.

18

Teo, W. Z.; Chng, E. L. K.; Sofer, Z.; Pumera, M. Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem. —Eur. J. 2014, 20, 9627–9632.

19

Pacilé, D.; Meyer, J. C.; Girit, Ç. Ö.; Zettl, A. The twodimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 2008, 92, 133107.

20

Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 2009, 21, 2889–2893.

21

Hilder, T. A.; Gaston, N. Interaction of boron nitride nanosheets with model cell membranes. ChemPhysChem 2016, 17, 1573–1578.

22

Ciofani, G.; Raffa, V.; Yu, J.; Chen, Y.; Obata, Y.; Takeoka, S.; Menciassi, A.; Cuschieri, A. Boron nitride nanotubes: A novel vector for targeted magnetic drug delivery. Curr. Nanosci. 2009, 5, 33–38.

23

Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Cytocompatibility, interactions, and uptake of polyethyleneiminecoated boron nitride nanotubes by living cells: Confirmation of their potential for biomedical applications. Biotechnol. Bioeng. 2008, 101, 850–858.

24

Yang, C. K. Exploring the interaction between the boron nitride nanotube and biological molecules. Comput. Phys. Commun. 2011, 182, 39–42.

25

Thomas, M.; Enciso, M.; Hilder, T. A. Insertion mechanism and stability of boron nitride nanotubes in lipid bilayers. J. Phys. Chem. B 2015, 119, 4929–4936.

26

Li, L.; Li, L. H.; Ramakrishnan, S.; Dai, X. J.; Nicholas, K.; Chen, Y.; Chen, Z. Q.; Liu, X. W. Controlling wettability of boron nitride nanotube films and improved cell proliferation. J. Phys. Chem. C 2012, 116, 18334–18339.

27

Li, L. H.; Chen, Y.; Glushenkov, A. M. Boron nitride nanotube films grown from boron ink painting. J. Mater. Chem. 2010, 20, 9679–9683.

28

Xing, T.; Mateti, S.; Li, L. H.; Ma, F. X.; Du, A. J.; Gogotsi, Y.; Chen, Y. Gas protection of two-dimensional nanomaterials from high-energy impacts. Sci. Rep. 2016, 6, 35532.

29

Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30.

30

Sukhorukova, I. V.; Zhitnyak, I. Y.; Kovalskii, A. M.; Matveev, A. T.; Lebedev, O. I.; Li, X.; Gloushankova, N. A.; Golberg, D.; Shtansky, D. V. Boron nitride nanoparticles with a petal-like surface as anticancer drug-delivery systems. ACS Appl. Mater. Interfaces 2015, 7, 17217–17225.

31

Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Introduction to Spectroscopy: A Guide for Students of Organic Chemistry, 3rd ed.; Brooks/Cole: Pacific Grove, CA, USA, 2001.

32

Chen, Y.; Zou, J.; Campbell, S. J.; Le Caer, G. Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 2004, 84, 2430–2432.

33

Catrenich, C. E.; Chestnut, M. H. Character and origin of vacuoles induced in mammalian cells by the cytotoxin of Helicobacter pylori. J. Med. Microbiol. 1992, 37, 389–395.

34

Chen, Y.; McMillan-Ward, E.; Kong, J.; Israels, S. J.; Gibson, S. B. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ. 2008, 15, 171–182.

35

Lei, W. W.; Mochalin, V. N.; Liu, D.; Qin, S.; Gogotsi, Y.; Chen, Y. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 2015, 6, 8849.

36

Perreault, F.; De Faria, A. F.; Nejati, S.; Elimelech, M. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano 2015, 9, 7226–7236.

37

Kang, S.; Herzberg, M.; Rodrigues, D. F.; Elimelech, M. Antibacterial effects of carbon nanotubes: Size does matter! Langmuir 2008, 24, 6409–6413.

38

Horváth, L.; Magrez, A.; Golberg, D.; Zhi, C. Y.; Bando, Y.; Smajda, R.; Horváth, E.; Forró, L.; Schwaller, B. In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano 2011, 5, 3800–3810.

39

Shang, L.; Nienhaus, K.; Nienhaus, G. U. Engineered nanoparticles interacting with cells: Size matters. J. Nanobiotechnol. 2014, 12, 5.

File
nr-11-1-334_ESM.pdf (799.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 March 2017
Revised: 07 April 2017
Accepted: 16 April 2017
Published: 08 June 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

The authors gratefully thank the financial support from the Australian Research Council under the Discovery program. Experimental assistance from Mrs. Dongmei Zhang is acknowledged.

Return