Journal Home > Volume 11 , Issue 1

We have fabricated top-gated ambipolar field-effect transistors (FETs) based on solution-derived carbon nanotube (CNT) network films, and then constructed inverters and ring oscillators (ROs) that can work under supply voltages as low as 0.2 V owing to the high uniformity of the devices. Significant improvements were achieved in the performance of these CNT-based ambipolar FETs and CMOS-like circuits by scaling down the gate length of the CNT FETs and optimizing the device structure and RO layout. In particular, the optimized five-stage RO is shown to present a record high oscillation frequency of up to 17.4 MHz with a propagation time of 5.6 ns at a 12-V working voltage. The CNT film-based ROs were used as carrier-wave generators in radio-frequency systems to demonstrate a complete signal transmission process. These results suggest that CNT thin film-based FETs and integrated circuits may soon find their way to radio-frequency applications with a frequency band of 13.56 MHz.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Carbon nanotube network film-based ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission

Show Author's information Yingjun Yang§Li Ding§Hengjia ChenJie HanZhiyong Zhang( )Lian-Mao Peng( )
Key Laboratory for the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijing100871China

§ Yingjun Yang and Li Ding contributed equally to this work.

Abstract

We have fabricated top-gated ambipolar field-effect transistors (FETs) based on solution-derived carbon nanotube (CNT) network films, and then constructed inverters and ring oscillators (ROs) that can work under supply voltages as low as 0.2 V owing to the high uniformity of the devices. Significant improvements were achieved in the performance of these CNT-based ambipolar FETs and CMOS-like circuits by scaling down the gate length of the CNT FETs and optimizing the device structure and RO layout. In particular, the optimized five-stage RO is shown to present a record high oscillation frequency of up to 17.4 MHz with a propagation time of 5.6 ns at a 12-V working voltage. The CNT film-based ROs were used as carrier-wave generators in radio-frequency systems to demonstrate a complete signal transmission process. These results suggest that CNT thin film-based FETs and integrated circuits may soon find their way to radio-frequency applications with a frequency band of 13.56 MHz.

Keywords: carbon nanotube, nanoelectronics, field-effect transistors, radio-frequency, ring oscillator

References(42)

1

Cavin, R. K.; Lugli, P.; Zhirnov, V. V. Science and engineering beyond Moore's law. Proc. IEEE 2012, 100, 1720–1749.

2

Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. -J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730–8745.

3

Peng, L. -M.; Zhang, Z. Y.; Wang, S. Carbon nanotube electronics: Recent advances. Mater. Today 2014, 17, 433–442.

4

Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858–862.

5

Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603–3607.

6

Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. -M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

7

Park, S.; Vosguerichian, M.; Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727–1752.

8

Jin, S. H.; Shin, J.; Chao, I. -T.; Han, S. Y.; Lee, D. J.; Lee, C. H.; Lee, J. -H.; Rogers, J. A. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics. Appl. Phys. Lett. 2014, 105, 013506.

9

Guo, J.; Hasan, S.; Javey, A.; Bosman, G.; Lundstrom, M. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 2005, 4, 715–721.

10

Zhang, P. P.; Qiu, C. G.; Zhang, Z. Y.; Ding, L.; Chen, B. Y.; Peng, L. -M. Performance projections for ballistic carbon nanotube FinFET at circuit level. Nano Res. 2016, 9, 1785–1794.

11

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of singlewalled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

12

LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101–104.

13

Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.

14

Wu, J.; Antaris, A.; Gong, M.; Dai, H. J. Top-down patterning and self-assembly for regular arrays of semiconducting singlewalled carbon nanotubes. Adv. Mater. 2014, 26, 6151–6156.

15

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

16

Asada, Y.; Miyata, Y.; Ohno, Y.; Kitaura, R.; Sugai, T.; Mizutani, T.; Shinohara, H. High-performance thin-film transistors with DNA-assisted solution processing of isolated single-walled carbon nanotubes. Adv. Mater. 2010, 22, 2698–2701.

17

Wang, H. L.; Mei, J. G.; Liu, P.; Schmidt, K.; Jiménez-Osés, G.; Osuna, S.; Fang, L.; Tassone, C. J.; Zoombelt, A. P.; Sokolov, A. N. et al. Scalable and selective dispersion of semiconducting arc-discharged carbon nanotubes by dithiafulvalene/thiophene copolymers for thin film transistors. ACS Nano 2013, 7, 2659–2668.

18

Han, J.; Ji, Q. Y.; Qiu, S.; Li, H. B.; Zhang, S. X.; Jin, H. H.; Li, Q. W. A versatile approach to obtain a high-purity semiconducting single-walled carbon nanotube dispersion with conjugated polymers. Chem. Commun. 2015, 51, 4712–4714.

19

Gu, J. T.; Han, J.; Liu, D.; Yu, X. Q.; Kang, L. X.; Qiu, S.; Jin, H. H.; Li, H. B.; Li, Q. W.; Zhang, J. Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors. Small 2016, 12, 4993–4999.

20

Sun, D. -M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6, 156–161.

21

Wang, C.; Zhang, J. L.; Ryu, K.; Badmaev, A.; De Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.

22

Geier, M. L.; McMorrow, J. J.; Xu, W. C.; Zhu, J.; Kim, C. H.; Marks, T. J.; Hersam, M. C. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 2015, 10, 944–949.

23

Sangwan, V. K.; Ortiz, R. P.; Alaboson, J. M. P.; Emergy, J. D.; Bedzyk, M. J.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 2012, 6, 7480–7488.

24

Chen, B. Y.; Zhang, P. P.; Ding, L.; Han, J.; Qiu, S.; Li, Q. W.; Zhang, Z. Y.; Peng, L. -M. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett. 2016, 16, 5120–5128.

25

Cao, Q.; Kim, H. -S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

26

Sun, D. -M.; Timmermans, M. Y.; Kaskela, A.; Nasibulin, A. G.; Kishimoto, S.; Mizutani, T.; Kauppinen, E. I.; Ohno, Y. Mouldable all-carbon integrated circuits. Nat. Commun. 2013, 4, 2302.

27

Wang, H.; Yu, L. L.; Lee, Y. -H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. -J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

28

Rizzi, L. G.; Bianchi, M.; Behnam, A.; Carrion, E.; Guerriero, E.; Polloni, L.; Pop, E.; Sordan, R. Cascading wafer-scale integrated graphene complementary inverters under ambient conditions. Nano Lett. 2012, 12, 3948–3953.

29

Guerriero, E.; Polloni, L.; Bianchi, M.; Behnam, A.; Carrion, E.; Rizzi, L. G.; Pop, E.; Sordan, R. Gigahertz integrated graphene ring oscillators. ACS Nano 2013, 7, 5588–5594.

30

Artukovic, E.; Kaempgen, M.; Hecht, D. S.; Roth, S.; Grüner, G. Transparent and flexible carbon nanotube transistors. Nano Lett. 2005, 5, 757–760.

31

Unalan, H. E.; Fanchini, G.; Kanwal, A.; Du Pasquier, A.; Chhowalla, M. Design criteria for transparent single-wall carbon nanotube thin-film transistors. Nano Lett. 2006, 6, 677–682.

32

Lau, P. H.; Takei, K.; Wang, C.; Ju, Y.; Kim, J.; Yu, Z. B.; Takahashi, T.; Cho, G.; Javey, A. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 2013, 13, 3864–3869.

33

Mizutani, T.; Okigawa, Y.; Ono, Y.; Kishimoto, S.; Ohno, Y. Medium scale integrated circuits using carbon nanotube thin film transistors. Appl. Phys. Express 2010, 3, 115101.

34

Kim, B.; Jang, S.; Geier, M. L.; Prabhumirashi, P. L.; Hersam, M. C.; Dodabalapur, A. High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. Nano Lett. 2014, 14, 3683–3687.

35

Ha, M. J.; Xia, Y.; Green, A. A.; Zhang, W.; Renn, M. J.; Kim, C. H.; Hersam, M. C.; Frisbie, C. D. Printed, sub-3 V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 2010, 4, 4388–4395.

36

Ha, M. J.; Seo, J. -W. T.; Prabhumirashi, P. L.; Zhang, W.; Geier, M. L.; Renn, M. J.; Kim, C. H.; Hersam, M. C.; Frisbie, C. D. Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. Nano Lett. 2013, 13, 954–960.

37

Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.

38

Xu, W. W.; Liu, Z.; Zhao, J. W.; Xu, W. Y.; Gu, W. B.; Zhang, X.; Qian, L.; Cui, Z. Flexible logic circuits based on top-gate thin film transistors with printed semiconductor carbon nanotubes and top electrodes. Nanoscale 2014, 6, 14891–14897.

39

Yu, W. J.; Kim, U. J.; Kang, B. R.; Lee, I. H.; Lee, E-H.; Lee, Y. H. Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors. Nano Lett. 2009, 9, 1401–1405.

40

Derenskyi, V.; Gomulya, W.; Rios, J. M. S.; Fritsch, M.; Fröhlich, N.; Jung, S.; Allard, S.; Bisri, S. Z.; Gordiichuk, P.; Herrmann, A. et al. Carbon nanotube network ambipolar field-effect transistors with 108 on/off ratio. Adv. Mater. 2014, 26, 5969–5975.

41

Schießl, S. P.; Fröhlich, N.; Held, M.; Gannott, F.; Schweiger, M.; Forster, M.; Scherf, M.; Zaumseil, J. Polymer-sorted semiconducting carbon nanotube networks for highperformance ambipolar field-effect transistors. ACS Appl. Mater. Interfaces 2015, 7, 682–689.

42

Zhang, J. L.; Wang, C.; Fu, Y.; Che, Y. C.; Zhou, C. W. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits. ACS Nano 2011, 5, 3284–3292.

File
nr-11-1-300_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 February 2017
Revised: 14 March 2017
Accepted: 16 April 2017
Published: 07 July 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0201901), the National Science Foundation of China (Nos. 61376126, 61321001 and 61427901), and the Beijing Municipal Science and Technology Commission (No. D161100002616001-3).

Return