Journal Home > Volume 11 , Issue 1

Sensitive detection of cancer biomarker microRNAs (miRNAs) is of vital importance for cancer diagnosis and treatment. Nonetheless, the detection sensitivity in the existing miRNA bioassays is severely limited by the structural characteristics of miRNA (including small length and high sequence homology) because most of these methods are based on target amplification. Herein, we report a novel approach to sensitive and specific detection of low-abundance miRNA via a unique strategy of nanoprobe dissolution-enhanced fluorescence amplification, in which a capture probe featuring molecular beacon structure is designed. By means of this strategy, miRNA-21 was detected in a linear range from 10 fM to 100 pM with a detection limit as low as 1.38 fM. High selectivity of the newly developed biosensor was demonstrated by the good discrimination against a target with a single-base mismatch. Furthermore, this assay was used for the detection of miRNA-21 added into fetal bovine serum samples with the recovery in the range of 90.2%–108% and coefficients of variation below 10.1%, indicating its promising applications to RNA immunoassays and early cancer diagnosis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrasensitive detection of cancer biomarker microRNA by amplification of fluorescence of lanthanide nanoprobes

Show Author's information Lianyu Lu1,2Datao Tu2( )Yan Liu2Shanyong Zhou2Wei Zheng2Xueyuan Chen1,2( )
College of ChemistryFuzhou UniversityFuzhou350116China
CAS Key Laboratory of Design and Assembly of Functional Nanostructuresand Fujian Provincial Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China

Abstract

Sensitive detection of cancer biomarker microRNAs (miRNAs) is of vital importance for cancer diagnosis and treatment. Nonetheless, the detection sensitivity in the existing miRNA bioassays is severely limited by the structural characteristics of miRNA (including small length and high sequence homology) because most of these methods are based on target amplification. Herein, we report a novel approach to sensitive and specific detection of low-abundance miRNA via a unique strategy of nanoprobe dissolution-enhanced fluorescence amplification, in which a capture probe featuring molecular beacon structure is designed. By means of this strategy, miRNA-21 was detected in a linear range from 10 fM to 100 pM with a detection limit as low as 1.38 fM. High selectivity of the newly developed biosensor was demonstrated by the good discrimination against a target with a single-base mismatch. Furthermore, this assay was used for the detection of miRNA-21 added into fetal bovine serum samples with the recovery in the range of 90.2%–108% and coefficients of variation below 10.1%, indicating its promising applications to RNA immunoassays and early cancer diagnosis.

Keywords: microRNA, lanthanide nanoparticles, fluorescence amplification, cancer biomarker, molecular beacon

References(40)

1

Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297.

2

Dong, H. F.; Lei, J. P.; Ding, L.; Wen, Y. Q.; Ju, H. X.; Zhang, X. J. MicroRNA: Function, detection, and bioanalysis. Chem. Rev. 2013, 113, 6207–6233.

3

He, L.; Hannon, G. J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531.

4

Lewis, B. P.; Burge, C. B.; Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20.

5

Griffiths-Jones, S.; Saini, H. K.; van Dongen, S.; Enright, A. J. miRBase: Tools for microRNA genomics. Nucleic Acids Res. 2008, 36, D154–D158.

6

Yu, M.; Lei, B.; Gao, C. B.; Yan, J.; Ma, P. X. Optimizing surface-engineered ultra-small gold nanoparticles for highly efficient miRNA delivery to enhance osteogenic differentiation of bone mesenchymal stromal cells. Nano Res. 2017, 10, 49–63.

7

Iorio, M. V.; Ferracin, M.; Liu, C. G.; Veronese, A.; Spizzo, R.; Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005, 65, 7065–7070.

8

Visone, R.; Rassenti, L. Z.; Veronese, A.; Taccioli, C.; Costinean, S.; Aguda, B. D.; Volinia, S.; Ferracin, M.; Palatini, J.; Balatti, V. et al. Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood 2009, 114, 3872–3879.

9

Laterza, O. F.; Lim, L.; Garrett-Engele, P. W.; Vlasakova, K.; Muniappa, N.; Tanaka, W. K.; Johnson, J. M.; Sina, J. F.; Fare, T. L.; Sistare, F. D. et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin. Chem. 2009, 55, 1977–1983.

10

Ciesla, M.; Skrzypek, K.; Kozakowska, M.; Loboda, A.; Jozkowicz, A.; Dulak, J. MicroRNAs as biomarkers of disease onset. Anal. Bioanal. Chem. 2011, 401, 2051–2061.

11

Liu, H. Y.; Li, L.; Duan, L. L.; Wang, X.; Xie, Y. X.; Tong, L. L.; Wang, Q.; Tang, B. High specific and ultrasensitive isothermal detection of MicroRNA by padlock probe-based exponential rolling circle amplification. Anal. Chem. 2013, 85, 7941–7947.

12

Pall, G. S.; Codony-Servat, C.; Byrne, J.; Ritchie, L.; Hamilton, A. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res. 2007, 35, e60.

13

Lim, L. P.; Lau, N. C.; Garrett-Engele, P.; Grimson, A.; Schelter, J. M.; Castle, J.; Bartel, D. P.; Linsley, P. S.; Johnson, J. M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433, 769–773.

14

Chen, C. F.; Ridzon, D. A.; Broomer, A. J.; Zhou, Z. H.; Lee, D. H.; Nguyen, J. T.; Barbisin, M.; Xu, N. L.; Mahuvakar, V. R.; Andersen, M. R. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33, e179.

15

Raymond, C. K.; Roberts, B. S.; Garrett-Engele, P.; Lim, L. P.; Johnson, J. M. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and shortinterfering RNAs. RNA 2005, 11, 1737–1744.

16

Cai, M. A.; Li, F.; Zhang, Y.; Wang, Q. B. One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection. Nano Res. 2010, 3, 557–563.

17

Yin, B. C.; Liu, Y. Q.; Ye, B. C. One-step, multiplexed fluorescence detection of microRNAs based on duplexspecific nuclease signal amplification. J. Am. Chem. Soc. 2012, 134, 5064–5067.

18

Duan, R. X.; Zuo, X. L.; Wang, S. T.; Quan, X. Y.; Chen, D. L.; Chen, Z. F.; Jiang, L.; Fan, C. H.; Xia, F. Quadratic isothermal amplification for the detection of microRNA. Nat. Protoc. 2014, 9, 597–607.

19

Cheng, Y. Q.; Zhang, X.; Li, Z. P.; Jiao, X. X.; Wang, Y. C.; Zhang, Y. L. Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew. Chem., Int. Ed. 2009, 48, 3268–3272.

20

Cui, L.; Zhu, Z.; Lin, N. H.; Zhang, H. M.; Guan, Z. C.; Yang, C. J. A T7 exonuclease-assisted cyclic enzymatic amplification method coupled with rolling circle amplification: A dual-amplification strategy for sensitive and selective microRNA detection. Chem. Commun. 2014, 50, 1576–1578.

21

Jia, H. X.; Li, Z. P.; Liu, C. H.; Cheng, Y. Q. Ultrasensitive detection of microRNAs by exponential isothermal amplification. Angew. Chem., Int. Ed. 2010, 49, 5498–5501.

22

Zhang, L. B.; Guo, S. J.; Zhu, J. B.; Zhou, Z. X.; Li, T.; Li, J.; Dong, S. J.; Wang, E. K. Engineering DNA three-way junction with multifunctional moieties: Sensing platform for bioanalysis. Anal. Chem. 2015, 87, 11295–11300.

23

Shi, C.; Liu, Q.; Ma, C. P.; Zhong, W. W. Exponential strand-displacement amplification for detection of microRNAs. Anal. Chem. 2014, 86, 336–339.

24

Wu, C. C.; Yan, L.; Wang, C. M.; Lin, H. X.; Wang, C.; Chen, X.; Yang, C. J. A general excimer signaling approach for aptamer sensors. Biosens. Bioelectron. 2010, 25, 2232–2237.

25

Conlon, P.; Yang, C. J.; Wu, Y. R.; Chen, Y.; Martinez, K.; Kim, Y.; Stevens, N.; Marti, A. A.; Jockusch, S.; Turro, N. J. et al. Pyrene excimer signaling molecular beacons for probing nucleic acids. J. Am. Chem. Soc. 2008, 130, 336–342.

26

Li, J. S.; Zhou, W. Y.; Ouyang, X. Y.; Yu, H. A.; Yang, R. H.; Tan, W. H.; Yuan, J. L. Design of a room-temperature phosphorescence-based molecular beacon for highly sensitive detection of nucleic acids in biological fluids. Anal. Chem. 2011, 83, 1356–1362.

27

Zhou, S. Y.; Zheng, W.; Chen, Z.; Tu, D. T.; Liu, Y. S.; Ma, E.; Li, R. F.; Zhu, H. M.; Huang, M. D.; Chen, X. Y. Dissolution-enhanced luminescent bioassay based on inorganic lanthanide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 12498–12502.

28

Tyagi, S.; Kramer, F. R. Molecular beacons: Probes that fluoresce upon hybridization. Nat. Biotechnol. 1996, 14, 303–308.

29

Tyagi, S. Imaging intracellular RNA distribution and dynamics in living cells. Nat. Methods 2009, 6, 331–338.

30

Song, Y. L.; Cui, L.; Wu, J.; Zhang, W. T.; Zhang, W. Y.; Kang, H. Z.; Yang, C. J. Allosteric molecular beacons for sensitive detection of nucleic acids, proteins, and small molecules in complex biological samples. Chem. —Eur. J. 2011, 17, 9042–9046.

31

Gao, W.; Shen, H.; Liu, L. X.; Xu, J. A.; Xu, J.; Shu, Y. Q. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J. Cancer Res. Clin. Oncol. 2011, 137, 557–566.

32

Song, X. J.; Feng, L. Z.; Liang, C.; Gao, M.; Song, G. S.; Liu, Z. Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced photodynamic therapy. Nano Res. 2017, 10, 1200–1212.

33

Cen, Y.; Wu, Y. M.; Kong, X. J.; Wu, S.; Yu, R. Q.; Chu, X. Phospholipid-modified upconversion nanoprobe for ratiometric fluorescence detection and imaging of phospholipase D in cell lysate and in living cells. Anal. Chem. 2014, 86, 7119–7127.

34

Hemmila, I.; Dakubu, S.; Mukkala, V. M.; Siitari, H.; Lövgren, T. Europium as a label in time-resolved immunofluorometric assays. Anal. Biochem. 1984, 137, 335–343.

35

Li, Z. Q.; Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 2008, 19, 345606.

36

Xu, J.; Zhou, S. Y.; Tu, D. T.; Zheng, W.; Huang, P.; Li, R. F.; Chen, Z.; Huang, M. D.; Chen, X. Y. Sub-5 nm lanthanidedoped lutetium oxyfluoride nanoprobes for ultrasensitive detection of prostate specific antigen. Chem. Sci. 2016, 7, 2572–2578.

37

Kim, N.; Son, S. H. Development of dissociation-enhanced lanthanide fluoroimmunoassay for measuring leptin. J. Fluoresc. 2016, 26, 1715–1721.

38

Zhao, C.; Lu, F. N.; Chen, H. X.; Zhao, F. Q.; Zhu, Z. W.; Zhao, X. D.; Chen, H. L. Clinical significance of circulating miRNA detection in lung cancer. Med. Oncol. 2016, 33, 41.

39

Dodgson, B. J.; Mazouchi, A.; Wegman, D. W.; Gradinaru, C. C.; Krylov, S. N. Detection of a thousand copies of miRNA without enrichment or modification. Anal. Chem. 2012, 84, 5470–5474.

40

Shah, V. P.; Midha, K. K.; Findlay, J. W. A.; Hill, H. M.; Hulse, J. D.; McGilveray, I. J.; McKay, G.; Miller, K. J.; Patnaik, R. N.; Powell, M. L. et al. Bioanalytical method validation—A revisit with a decade of progress. Pharm. Res. 2000, 17, 1551–1557.

File
nr-11-1-264_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 January 2017
Revised: 11 April 2017
Accepted: 13 April 2017
Published: 08 June 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work is supported by the National Basic Research Program of China (No. 2014CB845605), the National Natural Science Foundation of China (Nos. U1305244, 21325104, and 51402294), the CAS/SAFEA International Partnership Program for Creative Research Teams, Strategic Priority Research Program of the CAS (Nos. XDA09030307 and XDB20000000), Natural Science Foundation of Fujian Province (No. 2017I0018), the Youth Innovation Promotion Association (No. 2014264) and the Chunmiao Project of Haixi Institute of the CAS (No. CMZX-2014-003).

Return