Journal Home > Volume 11 , Issue 1

We perform detailed quantum chemical calculations to elucidate the origin and mechanism of the selective permeability of alkali and alkaline earth cation-decorated graphene oxide (M-GO) membranes to organic solvents. The results show that the selectivity is associated mainly with the transport properties of solvents in the membranes, which depends on two regions of the flow path: the sp3 C–O matrix of the GO sheets and the cation at the center of the hexagon rather than the sp2 region. According to the delocalization of π states in sp2 regions, we propose a design guide for high-quality M-GO membranes. The solvent–cation interaction essentially causes directional transport of molecules in the M-GO membranes under the transmembrane pressure, indicating a site-to-site mechanism. The solvent–sp3 C–O matrix interaction may inhibit molecular transport between two fixed cations by consuming energy. The competition between energy consumption by the solvent–cation interaction and energy expenditure by the solvent–sp3 C–O matrix interaction leads to various transport properties of solvents and thus allows for the selective permeability of the M-GO membranes. Findings from the study are helpful for the future design of multifunctional M-GO macro-membranes as cost-effective solution nanofilters in chemical, biological, and medical applications.


menu
Abstract
Full text
Outline
About this article

Theoretical investigations of transport properties of organic solvents in cation-functionalized graphene oxide membranes: Implications for drug delivery

Show Author's information Kai Song1Yong Long2Xun Wang2( )Gang Zhou1( )
State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
Key Lab of Organic Optoelectronics and Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084China

Abstract

We perform detailed quantum chemical calculations to elucidate the origin and mechanism of the selective permeability of alkali and alkaline earth cation-decorated graphene oxide (M-GO) membranes to organic solvents. The results show that the selectivity is associated mainly with the transport properties of solvents in the membranes, which depends on two regions of the flow path: the sp3 C–O matrix of the GO sheets and the cation at the center of the hexagon rather than the sp2 region. According to the delocalization of π states in sp2 regions, we propose a design guide for high-quality M-GO membranes. The solvent–cation interaction essentially causes directional transport of molecules in the M-GO membranes under the transmembrane pressure, indicating a site-to-site mechanism. The solvent–sp3 C–O matrix interaction may inhibit molecular transport between two fixed cations by consuming energy. The competition between energy consumption by the solvent–cation interaction and energy expenditure by the solvent–sp3 C–O matrix interaction leads to various transport properties of solvents and thus allows for the selective permeability of the M-GO membranes. Findings from the study are helpful for the future design of multifunctional M-GO macro-membranes as cost-effective solution nanofilters in chemical, biological, and medical applications.

Keywords: density functional theory, permeability, alkali and alkaline earth cation-decorated graphene oxide (M-GO) membrane, organic solvent, transport

References(45)

1

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

2

Cai, W. W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D. X.; Velamakanni, A.; An, S. J.; Stoller, M. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 2008, 321, 1815–1817.

3

Sun, X. M.; Liu, Z; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

4

Su, Y.; Jia, S.; Du, J. H.; Yuan, J. T.; Liu, C.; Ren, W. C.; Cheng, H. M. Direct writing of graphene patterns and devices on graphene oxide films by inkjet reduction. Nano Res. 2015, 8, 3954–3962.

5

Park, S.; Ruoff, R. S. Chemical Methods for the Production of Graphenes. Nat. Nanotechnol. 2009, 4, 217–224.

6

Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024.

7

Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

8

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

9

Lu, G. H.; Mao, S.; Park, S.; Ruoff, R. S.; Chen, J. H. Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Res. 2009, 2, 192–200.

10

Sun, H. M.; Cao, L. Y.; Lu, L. H. Magnetite/reduced graphene oxide nanocomposites: One step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res. 2011, 4, 550–562.

11

Ma, X. X.; Tao, H. Q.; Yang, K.; Feng, L. Z.; Cheng, L.; Shi, X. Z.; Li, Y. G.; Guo, L.; Liu, Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012, 5, 199–212.

12

Wang, P.; Han, L.; Zhu, C. Z.; Zhai, Y. M.; Dong, S. J. Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano Res. 2011, 4, 1153–1162.

13

Sun, H.; Xu, G. L.; Xu, Y. F.; Sun, S. G.; Zhang, X. F.; Qiu, Y. C.; Yang, S. H. A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium–sulfur batteries. Nano Res. 2012, 5, 726–738.

14

Boukhvalov, D. W.; Katsnelson, M. I.; Son, Y. W. Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 2013, 13, 3930–3935.

15

Sun, P. Z.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Xu, Z. P.; Zhu, H. W. Selective ion penetration of graphene oxide membranes. ACS Nano 2013, 7, 428–437.

16

Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 2012, 335, 442–444.

17

Hu, H. W.; Allan, C. C. K.; Li, J. H.; Kong, Y.; Wang, X. W.; Xin, J. H.; Hu, H. Multifunctional organically modified graphene with super-hydrophobicity. Nano Res. 2014, 7, 418–433.

18

Sun, P. Z.; Zheng, F.; Zhu, M.; Song, Z. G.; Wang, K. L.; Zhong, M. L.; Wu, D. H.; Little, R. B.; Xu, Z. P.; Zhu, H. W. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation–π interactions. ACS Nano 2014, 8, 850–859.

19

Coleman, M.; Tang, X. Diffusive transport of two charge equivalent and structurally similar ruthenium complex ions through graphene oxide membranes. Nano Res. 2015, 8, 1128–1138.

20

Long, Y.; Wang, K.; Xiang, G. L.; Song, K.; Zhou, G.; Wang, X. Molecule channels directed by cation-decorated graphene oxide nanosheets and their application as membrane reactors. Adv. Mater. 2017, 29, 1606093.

21

Koresh, J. E.; Soffer, A. Mechanism of permeation through molecular-sieve carbon membrane. Part 1. The effect of adsorption and the dependence on pressure. J. Chem. Soc., Faraday Trans. 1 1986, 82, 2057–2063.

22

Chmelik, C.; Voβ, H.; Bux, H.; Caro, J. Adsorption and diffusion-basis for molecular understanding of permeation through molecular sieve membranes. Chem. Ing. Tech. 2011, 83, 104–112.

23

Akbari, A.; Sheath, P.; Martin, S. T.; Shinde, D. B.; Shaibani, M.; Banerjee, P. C.; Tkacz, R.; Bhattacharyya, D.; Majumder, M. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 2016, 7, 10891.

24

Zhou, X.; Laroche, F.; Lamers, G. E. M.; Torraca, V.; Voskamp, P.; Lu, T.; Chu, F. Q.; Spaink, H. P.; Abrahams, J. P.; Liu, Z. F. Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res. 2012, 5, 703–709.

25

Tachikawa, H.; Nagoya, Y.; Fukuzumi, T. Density functional theory (DFT) study on the effects of Li+ doping on electronic states of graphene. J. Power Sources 2010, 195, 6148–6152.

26

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision A. 1; Gaussian, Inc. : Wallingford, CT, USA, 2009.

27

Lee, C.; Yang, W. T.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

28

Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.

29

Becke, A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

30

Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-consistent molecular orbital methods. XⅡ. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261.

31

Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theoret. Chim. Acta 1973, 28, 213–222.

32

Rauhut, G.; Pulay, R. Transferable scaling factors for density functional derived vibrational force fields. J. Phys. Chem. 1995, 99, 3093–3100.

33

Scott, A. P.; Radom, L. Harmonic vibrational frequencies: An evaluation of hartree-fock, møller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 1996, 100, 16502–16513.

34

Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. T. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506.

35

Feller, D.; Dixon, D. A.; Nicholas, J. B. Binding enthalpies for alkali cation-benzene complexes revisited. J. Phys. Chem. A 2000, 104, 11414–11419.

36

Tsuzuki, S.; Uchimaru, T.; Mikami, M. Is the cation/π interaction in alkaline-earth-metal dication/benzene complexes a covalent interaction? J. Phys. Chem. A 2003, 107, 10414–10418.

37

Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Molecular clusters of π-systems: Theoretical studies of structures, spectra, and origin of interaction energies. Chem. Rev. 2000, 100, 4145–4185.

38

Chan, K. T.; Neaton, J. B.; Cohen, M. L. First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 2008, 77, 235430.

39

Giri, P. K.; Goswami, D. K.; Perumal, A. Advanced Nanomaterials and Nanotechnology; Springer-Verlag: Berlin Heidelberg, 2013.

DOI
40

Ma, J. C.; Dougherty, D. A. The cation–π interaction. Chem. Rev. 1997, 97, 1303–1324.

41

Dougherty, D. A. The cation-π interaction. Acc. Chem. Res. 2013, 46, 885–893.

42

Grigoriev, V. A.; Cheng, D.; Hill, C. L.; Weinstock, I. A. Role of alkali metal cation size in the energy and rate of electron transfer to solvent-separated 1: 1[(M+)(acceptor)] (M+ = Li+, Na+, K+) ion pairs. J. Am. Chem. Soc. 2001, 123, 5292–5307.

43

Kumpf, R. A.; Dougherty, D. A. A mechanism for ion selectivity in potassium channels: Computational studies of cation–π interactions. Science 1993, 261, 1708–1710.

44

Steiner, T. The hydrogen bond in the solid state. Angew. Chem., Int. Ed. 2002, 41, 48–76.

DOI
45

Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 March 2017
Revised: 10 April 2017
Accepted: 11 April 2017
Published: 09 June 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

The presented research was financially supported by the National Natural Science Foundation of China (No. 21431003), and Fundamental Research Funds for Central Universities (No. buctrc201514). Our calculation works were completed on the "Explorer 100" cluster system of Tsinghua National Laboratory for Information Science and Technology.

Return