Journal Home > Volume 11 , Issue 1

Hierarchical yolk–shell structured cathodes with controllable composition are potentially attractive materials for the fabrication of lithium-ion batteries, but they are difficult to synthesize. In this work, we present a simple, scalable, and general morphology-inheritance strategy to synthesize spinel manganese cathodes with a hierarchical yolk–shell structure. Starting from uniform Mn carbonate spheres prepared by an ultrafast and scalable microwave-assisted method, we show that the subsequent sintering results in the formation of Mn2O3 precursors with a yolk–shell structure, which can be effectively transferred to spinel manganese cathodes via simple impregnation and solid-state reaction. Owing to the simple and scalable nature of the present strategy, materials prepared through this approach have great potential as cathodes of lithium-ion batteries, where they can lead to high specific capacity, outstanding cyclability, and superior rate capability. In particular, both LiMn2O4 and LiNi0.5Mn1.5O4 with hierarchical yolk–shell structure achieved nearly theoretical capacity, without any apparent decay after 100 cycles at 1 C. Moreover, 80% of the initial discharge capacities of both samples can be maintained for up to 500 cycles at a high rate of 10 C.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Scalable and general synthesis of spinel manganese-based cathodes with hierarchical yolk–shell structure and superior lithium storage properties

Show Author's information Yu WuJunting ZhangChuanbao Cao( )
Research Center of Materials ScienceBeijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green ApplicationsBeijing Institute of TechnologyBeijing100081China

Abstract

Hierarchical yolk–shell structured cathodes with controllable composition are potentially attractive materials for the fabrication of lithium-ion batteries, but they are difficult to synthesize. In this work, we present a simple, scalable, and general morphology-inheritance strategy to synthesize spinel manganese cathodes with a hierarchical yolk–shell structure. Starting from uniform Mn carbonate spheres prepared by an ultrafast and scalable microwave-assisted method, we show that the subsequent sintering results in the formation of Mn2O3 precursors with a yolk–shell structure, which can be effectively transferred to spinel manganese cathodes via simple impregnation and solid-state reaction. Owing to the simple and scalable nature of the present strategy, materials prepared through this approach have great potential as cathodes of lithium-ion batteries, where they can lead to high specific capacity, outstanding cyclability, and superior rate capability. In particular, both LiMn2O4 and LiNi0.5Mn1.5O4 with hierarchical yolk–shell structure achieved nearly theoretical capacity, without any apparent decay after 100 cycles at 1 C. Moreover, 80% of the initial discharge capacities of both samples can be maintained for up to 500 cycles at a high rate of 10 C.

Keywords: lithium-ion batteries, yolk–shell structures, microwave-assisted method, scalable synthesis, spinel manganese cathodes

References(61)

1

Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem., Int. Ed. 2012, 51, 9994–10024.

2

Manthiram, A.; Chemelewski, K.; Lee, E. S. A Perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ. Sci. 2014, 7, 1339–1350.

3

Lee, M. J.; Lee, S.; Oh, P.; Kim, Y.; Cho, J. High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries. Nano Lett. 2014, 14, 993–999.

4

He, H. B.; Cong, H. J.; Sun, Y.; Zan, L.; Zhang, Y. X. Spinel-layered integrate structured nanorods with both high capacity and superior high-rate capability as cathode material for lithium-ion batteries. Nano Res. 2017, 10, 556–569.

5

Lu, J.; Zhan, C.; Wu, T. P.; Wen, J. G.; Lei, Y.; Kropf, A. J.; Wu, H. M.; Miller, D. J.; Elam, J. W.; Sun, Y. K. et al. Effectively suppressing dissolution of manganese from spinel lithium manganate via ananoscale surface-doping approach. Nat. Commun. 2014, 5, 5693.

6

Moorhead-Rosenberg, Z.; Huq, A.; Goodenough, J. B.; Manthiram, A. Electronic and electrochemical properties of Li1xMn1.5Ni0.5O4 spinel cathodes as a function of lithium content and cationordering. Chem. Mater. 2015, 27, 6934–6945.

7

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

8

Nan, C. Y.; Lu, J.; Li, L. H.; Li, L. L.; Peng, Q.; Li, Y. D. Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano Res. 2013, 6, 469–477.

9

Wang, C.; Wang, F. X.; Zhao, Y. J.; Li, Y. H.; Yue, Q.; Liu, Y. P.; Liu, Y.; Elzatahry, A. A.; Al-Enizi, A.; Wu, Y. P. et al. Hollow TiO2–X porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries. Nano Res. 2016, 9, 165–173.

10

Jia, X. L.; Lu, Y. F.; Wei, F. Confined growth of Li4Ti5O12 nanoparticles in nitrogen-doped mesoporous graphene fibers for high-performance lithium-ion battery anodes. Nano Res. 2016, 9, 230–239.

11

Xu, K. Q.; Ben, L. B.; Li, H.; Huang, X. J. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res. 2015, 8, 2654–2662.

12

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

13

Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.

14

Lian, C.; Xiao, X. L.; Chen, Z.; Liu, Y. X.; Zhao, E. Y.; Wang, D. S.; Chen, C. Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 2016, 9, 435–441.

15

Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Zhou, C. W. A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Res. 2016, 9, 3428–3436.

16

Niu, C. J.; Huang, M.; Wang, P. Y.; Meng, J. S.; Liu, X.; Wang, X. P.; Zhao, K. N.; Yu, Y.; Wu, Y. Z.; Lin, C. et al. Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Res. 2016, 9, 128–138.

17

Shaju, K. M.; Bruce, P. G. Nano-LiNi0.5Mn1.5O4 spinel: Ahigh power electrode for Li-ion batteries. Dalton Trans. 2008, 5471–5475.

18

Lee, H. W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 2010, 10, 3852–3856.

19

Lee, S.; Oshima, Y.; Hosono, E.; Zhou, H. S.; Kim, K.; Chang, H. M.; Kanno, R.; Takayanagi, K. Phase transitions in a LiMn2O4 nanowire battery observed by operando electron microscopy. ACS Nano 2015, 9, 626–632.

20

Xu, R.; Zhang, X. F.; Chamoun, R.; Shui, J. L.; Li, J. C. M.; Lu, J.; Amine, K.; Belharouak, I. Enhanced rate performance of LiNi0.5Mn1.5O4 fibers synthesized by electrospinning. Nano Energy 2015, 15, 616–624.

21

Kim, D. K.; Muralidharan, P.; Lee, H. W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H. L.; Huggins, R. A.; Cui, Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948–3952.

22

Cheng, F. Y.; Wang, H. B.; Zhu, Z. Q.; Wang, Y.; Zhang, T. R.; Tao, Z. L.; Chen, J. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 2011, 4, 3668–3675.

23

Zhang, X. L.; Cheng, F. Y.; Yang, J. G.; Chen, J. LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett. 2013, 13, 2822–2825.

24

Ding, Y. L.; Xie, J.; Cao, G. S.; Zhu, T. J.; Yu, H. M.; Zhao, X. B. Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries. Adv. Funct. Mater. 2011, 21, 348–355.

25

Zhou, L.; Zhao, D. Y.; Lou, X. W. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem., Int. Ed. 2012, 51, 239–241.

26

Wu, Y.; Cao, C. B.; Zhang, J. T.; Wang, L.; Ma, X. L.; Xu, X. Y. Hierarchical LiMn2O4 hollow cubes with exposed {111} planes as high-power cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 19567–19572.

27

Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

28

Yin, Y. D.; Rious, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale kirkendalleffect. Science 2004, 304, 711–714.

29

Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.

30

Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

31

Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk–shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321.

32

Hong, Y. J.; Son, M. Y.; Kang, Y. C. One-pot facile synthesis of double-shelled SnO2 yolk–shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv. Mater. 2013, 25, 2279–2283.

33

Zhang, G. Q.; Lou, X. W. General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 9041–9044.

34

Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609–4613.

35

Wang, J. Y.; Tang, H. J.; Wang, H.; Yu, R. B.; Wang, D. Multi-shelled hollow micro-/nanostructures: Promising platforms for lithium-ion batteries. Mater. Chem. Front. 2017, 1, 414–430.

36

Li, H.; Ma, H. R.; Yang, M.; Wang, B.; Shao, H.; Wang, L.; Yu, R. B.; Wang, D. Highly controlled synthesis of multi-shelled NiO hollow microspheres for enhanced lithium storage properties. Mater. Res. Bull. 2017, 87, 224–229.

37

Wang, J. Y.; Tang, H. J.; Zhang, L. J.; Ren, H.; Yu, R. B.; Jin, Q.; Qi, J.; Mao, D.; Yang, M.; Wang, Y. et al. Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat. Energy 2016, 1, 16050.

38

Zhang, J.; Ren, H.; Wang, J. Y.; Qi, J.; Yu, R. B.; Wang, D.; Liu, Y. L. Engineering of multi-shelled SnO2 hollow microspheres for highly stable lithium-ion batteries. J. Mater. Chem. A 2016, 4, 17673–17677.

39

Ren, H.; Sun, J. J.; Yu, R. B.; Yang, M.; Gu, L.; Liu, P. R.; Zhao, H. J.; Kisailus, D.; Wang, D. Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chem. Sci. 2016, 7, 793–798.

40

Chen, M. J.; Wang, J. Y.; Tang, H. J.; Yang, Y.; Wang, B.; Zhao, H. J.; Wang, D. Synthesis of multi-shelled MnO2 hollow microspheres via an anion-adsorption process of hydrothermal intensification. Inorg. Chem. Front. 2016, 3, 1065–1070.

41

Ren, H.; Yu, R. B.; Wang, J. Y.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H. J.; Wang, D. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett. 2014, 14, 6679–6684.

42

Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.

43

Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 6417–6420.

44

Wang, F.; Wang, J. Y.; Ren, H.; Tang, H. J.; Yu, R. B.; Wang, D. Multi-shelled LiMn2O4 hollow microspheres as superior cathode materials for lithium-ion batteries. Inorg. Chem. Front. 2016, 3, 365–369.

45

Sim, C. M.; Choi, S. H.; Kang, Y. C. Superior electrochemical properties of LiMn2O4 yolk–shell powders prepared by a simple spray pyrolysis process. Chem. Commun. 2013, 49, 5978–5980.

46

Choi, S. H.; Hong, Y. J.; Kang, Y. C. Yolk–shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis. Nanoscale 2013, 5, 7867–7871.

47

Wu, X. J.; Xu, D. S. Soft template synthesis of yolk/silica shell particles. Adv. Mater. 2010, 22, 1516–1520.

48

An, Q. Y.; Zhang, P. F.; Xiong, F. Y.; Wei, Q. L.; Sheng, J. Z.; Wang, Q. Q.; Mai, L. Q. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res. 2015, 8, 481–490.

49

Trogadas, P.; Ramani, V.; Strasser, P.; Fuller, T. F.; Coppens, M. O. Hierarchically structured nanomaterials for electrochemical energy conversion. Angew. Chem., Int. Ed. 2016, 55, 122–148.

50

Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheetsderived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564.

51

Wu, Y.; Cao, C. B.; Zhu, Y. Q.; Li, J. L.; Wang, L. Cube-shaped hierarchical LiNi1/3Co1/3Mn1/3O2 with enhanced growth of nanocrystal planes as high-performance cathode materials for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 15523–15528.

52

Wang, Y. W.; Yu, L.; Lou, X. W. Synthesis of highly uniform molybdenum–glyceratespheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 7423–7426.

53

Li, J. L.; Cao, C. B.; Xu, X. Y.; Zhu, Y. Q.; Yao, R. M. LiNi1/3Co1/3Mn1/3O2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 11848–11852.

54

Wu, Y.; Zhang, J. T.; Cao, C. B.; Khalid, S.; Zhao, Q. Q.; Wang, R.; Butt, F. K. LiNi0.5Mn1.5O4 nano-submicro cubes as high-performance 5 V cathode materials for lithium-ion batteries. Electrochim. Acta 2017, 230, 293–298.

55

Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749–6773.

56

Lai, X. Y.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.

57

Zhu, Y. Q.; Cao, C. B.; Tao, S.; Chu, W. S.; Wu, Z. Y.; Li, Y. D. Ultrathin nickel hydroxide and oxide nanosheets: Synthesis, characterizations and excellent supercapacitorperformances. Sci. Rep. 2014, 4, 5787.

58

Zhang, J. T.; Zhu, Y. Q.; Cao, C. B.; Butt, F. K. Microwave-assisted and large-scale synthesis of SnO2/carbon-nanotube hybrids with high lithium storage capacity. RSC Adv. 2015, 5, 58568–58573.

59

Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

60

Park, O. K.; Cho, Y.; Lee, S.; Yoo, H. C.; Song, H. K.; Cho, J. Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci. 2011, 4, 1621–1633.

61

Fang, X.; Ge, M. Y.; Rong, J. P.; Zhou, C. W. Free-standing LiNi0.5Mn1.5O4/Carbon nanofiber network film as lightweight and high-power cathode for lithium ion batteries. ACS Nano 2014, 8, 4876–4882.

File
nr-11-1-246_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 February 2017
Revised: 10 April 2017
Accepted: 11 April 2017
Published: 02 August 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 50972017 and 21371023) and the National Basic Research Program of China (No. 2015CB251100).

Return