Journal Home > Volume 11 , Issue 1

An innovative spongy nanographene (SG) shell for a silicon substrate was prepared by low-temperature chemical vapor deposition on a hierarchical nickel nanotemplate. The SG-functionalized silicon (Si@SG) composite shows outstanding properties, which may be helpful to overcome issues affecting current silicon anodes used in lithium ion batteries such as poor conductivity, large volume expansion and high mass transfer resistance. The hierarchical nanographene shell exhibits elastic, sponge-like features that allow it to self-adaptively change its volume to accommodate the volume expansion of silicon. In addition, the porous, spongy framework containing randomly stacked graphene nanosheets presents low diffusion barriers and provides sufficiently free and short-haul channel segments to allow the fast migration of Li and electrolyte ions. The unique properties of the present silicon anode result in excellent electrochemical performances in terms of long-term cycling stability (95% capacity retention after 510 cycles), rate performance, and cycling behavior for high mass loadings at different current densities.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Three-dimensional spongy nanographene-functionalized silicon anodes for lithium ion batteries with superior cycling stability

Show Author's information Chunfei ZhangTong-Hyun KangJong-Sung Yu( )
Department of Energy Systems EngineeringDGISTDaegu42988Republic of Korea

Abstract

An innovative spongy nanographene (SG) shell for a silicon substrate was prepared by low-temperature chemical vapor deposition on a hierarchical nickel nanotemplate. The SG-functionalized silicon (Si@SG) composite shows outstanding properties, which may be helpful to overcome issues affecting current silicon anodes used in lithium ion batteries such as poor conductivity, large volume expansion and high mass transfer resistance. The hierarchical nanographene shell exhibits elastic, sponge-like features that allow it to self-adaptively change its volume to accommodate the volume expansion of silicon. In addition, the porous, spongy framework containing randomly stacked graphene nanosheets presents low diffusion barriers and provides sufficiently free and short-haul channel segments to allow the fast migration of Li and electrolyte ions. The unique properties of the present silicon anode result in excellent electrochemical performances in terms of long-term cycling stability (95% capacity retention after 510 cycles), rate performance, and cycling behavior for high mass loadings at different current densities.

Keywords: silicon, spongy nanographene, core–shell, lithium ion battery, three-dimensional structure

References(51)

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

2

Liu, J.; Tang, S. S.; Lu, Y. K.; Cai, G. M.; Liang, S. Q.; Wang, W. J.; Chen, X. L. Synthesis of Mo2N nanolayer coated MoO2 hollow nanostructures as high-performance anode materials for lithium-ion batteries. Energy Environ. Sci. 2013, 6, 2691–2697.

3

Liu, J.; Lu, P. -J.; Liang, S. Q.; Liu, J.; Wang, W. J.; Lei, M.; Tang, S. S.; Yang, Q. Ultrathin Li3VO4 nanoribbon/graphene sandwich-like nanostructures with ultrahigh lithium ion storage properties. Nano Energy 2015, 12, 709–724.

4

Bogart, T. D.; Oka, D.; Lu, X. T.; Gu, M.; Wang, C. M.; Korgel, B. A. Lithium ion battery peformance of silicon nanowires with carbon skin. ACS Nano 2014, 8, 915–922.

5

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. -M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

6

Yoshio, M.; Wang, H. Y.; Fukuda, K. Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. Angew. Chem. 2003, 115, 4335–4338.

7

Zhang, C. F.; Yu, J. -S. Morphology-tuned synthesis of NiCo2O4-coated 3D graphene architectures used as binder-free electrodes for lithium-ion batteries. Chem. —Eur. J. 2016, 22, 4422–4430.

8

Chaudhari, S.; Bhattacharjya, D.; Yu, J. -S. Facile synthesis of hexagonal NiCo2O4 nanoplates as high performance anode material for lithium ion batteries. Bull. Korean Chem. Soc. 2015, 36, 2330–2336.

9

Cao, K. Z.; Jiao, L. F.; Liu, Y. C.; Liu, H. Q.; Wang, Y. J.; Yuan, H. T. Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv. Funct. Mater. 2015, 25, 1082–1089.

10

Park, M. -S.; Wang, G. -X.; Kang, Y. -M.; Wexler, D.; Dou, S. -X.; Liu, H. -K. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. 2007, 119, 764–767.

11

Li, D.; Li, X. W.; Hou, X. Y.; Sun, X. L.; Liu, B. L.; He, D. Y. Building a Ni3S2 nanotube array and investigating its application as an electrode for lithium ion batteries. Chem. Commun. 2014, 50, 9361–9364.

12

Zhou, Y. L.; Yan, D.; Xu, H. Y.; Feng, J. K.; Jiang, X. L.; Yue, J.; Yang, J.; Qian, Y. T. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 2015, 12, 528–537.

13

Yan, J. M.; Huang, H. Z.; Zhang, J.; Liu, Z. J.; Yang, Y. A study of novel anode material CoS2 for lithium ion battery. J. Power Sources 2005, 146, 264–269.

14

Bhattacharjya, D.; Sinhamahapatra, A.; Ko, J. -J.; Yu, J. -S. High capacity and exceptional cycling stability of ternary metal sulfide nanorods as Li ion battery anodes. Chem. Commum. 2015, 51, 13350–13353.

15

Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater. 2007, 19, 2336–2340.

16

Li, X. F.; Dhanabalan, A.; Gu, L.; Wang, C. L. Three-dimensional porous core-shell Sn@carbon composite anodes for high-performance lithium-ion battery applications. Adv. Energy Mater. 2012, 2, 238–244.

17

Li, W. -J.; Chou, S. -L.; Wang, J. -Z.; Liu, H. -K.; Dou, S. -X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013, 13, 5480–5484.

18

Sun, J.; Zheng, G. Y.; Lee, H. -W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett. 2014, 14, 4573–4580.

19

Park, C. M.; Sohn, H. J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 2007, 19, 2465–2468.

20

Zhu, Y. H.; Liu, W.; Zhang, X. Y.; He, J. C.; Chen, J. T.; Wang, Y. P.; Cao, T. B. Directing silicon–graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries. Langmuir 2013, 29, 744–749.

21

Zhou, X. S.; Yin, Y. -X.; Cao, A. -M.; Wan, L. -J.; Guo, Y. -G. Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode. ACS Appl. Mater. Interfaces 2012, 4, 2824–2828.

22

Ko, M.; Chae, S.; Jeong, S.; Oh, P.; Cho, J. Elastica-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. ACS Nano 2014, 8, 8591–8599.

23

Zhou, M.; Li, X. L.; Wang, B.; Zhang, Y. B.; Ning, J.; Xiao, Z. C.; Zhang, X. H.; Chang, Y. H.; Zhi, L. J. High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano Lett. 2015, 15, 6222–6228.

24

Wu, P.; Wang, H.; Tang, Y. W.; Zhou, Y. M.; Lu, T. H. Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: In situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities. ACS Appl. Mater. Interfaces 2014, 6, 3546–3552.

25

Chang, J. B.; Huang, X. K.; Zhou, G. H.; Cui, S. M.; Hallac, P. B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv. Mater. 2014, 26, 758–764.

26

Holzapfel, M.; Buqa, H.; Scheifele, W.; Novák, P.; Petrat, F. -M. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chem. Commun. 2005, 1566–1568.

27

Lin, N.; Han, Y.; Wang, L. B.; Zhou, J. B.; Zhou, J.; Zhu, Y. C.; Qian, Y. T. Preparation of nanocrystalline silicon from SiCl4 at 200 ℃ in molten salt for high-performance anodes for lithium ion batteries. Angew. Chem., Int. Ed. 2015, 54, 3822–3825.

28

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

29

Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

30

Wang, B.; Li, X. L.; Zhang, X. F.; Luo, B.; Zhang, Y. B.; Zhi, L. J. Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes. Adv. Mater. 2013, 25, 3560–3565.

31

Zhou, M.; Cai, T. W.; Pu, F.; Chen, H.; Wang, Z.; Zhang, H. Y.; Guan, S. Y. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 3449–3455.

32

Chen, S. Q.; Bao, P. T.; Huang, X. D.; Sun, B.; Wang, G. X. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res. 2014, 7, 85–94.

33

Hwang, T. H.; Lee, Y. M.; Kong, B. S.; Seo, J. S.; Choi, J. W. Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 2012, 12, 802–807.

34

Ng, S. -H.; Wang, J. Z.; Wexler, D.; Konstantinov, K.; Guo, Z. -P.; Liu, H. -K. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem., Int. Ed. 2006, 45, 6896–6899.

35

Kim, H.; Cho, J. Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. Nano Lett. 2008, 8, 3688–3691.

36

Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commum. 2013, 4, 1943.

37

Ng, S. H.; Wang, J. Z.; Wexler, D.; Chew, S. Y.; Liu, H. K. Amorphous carbon-coated silicon nanocomposites: A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J. Phys. Chem. C 2007, 111, 11131–11138.

38

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. -W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

39

Li, Y. Z.; Yan, K.; Lee, H. -W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.

40

Gong, D. C.; Wang, B.; Zhu, J. Y.; Podila, R.; Rao, A. M.; Yu, X. Z.; Xu, Z.; Lu, B. G. An iodine quantum dots based rechargeable sodium–iodine battery. Adv. Energy Mater. 2017, 7, 1601885.

41

Hu, P.; Wang, X. F.; Ma, J.; Zhang, Z. H.; He, J. J.; Wang, X. G.; Shi, S. Q.; Cui, G. L.; Chen, L. Q. NaV3(PO4)3/C nanocomposite as novel anode material for Na-ion batteries with high stability. Nano Energy 2016, 26, 382–391.

42

Yang, Y. H.; Wang, B.; Zhu, J. Y.; Zhou, J.; Xu, Z.; Fan, L.; Zhu, J.; Podila, R.; Rao, A. M.; Lu, B. Bacteria absorption-based Mn2P2O7–carbon@reduced graphene oxides for high-performance lithium-ion battery anodes. ACS Nano 2016, 10, 5516–5524.

43

Sint, K.; Wang, B. Y.; Král, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 2008, 130, 16448–16449.

44

Son, I. H.; Hwan Park, J.; Kwon, S.; Park, S.; Rümmeli, M. H.; Bachmatiuk, A.; Song, H. J.; Ku, J.; Choi, J. W.; Choi, J. -M. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commum. 2015, 6, 7393.

45

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

46

Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D.; Zhao, X. -B.; Fan, H. J. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 2012, 6, 5531–5538.

47

Zhang, C. F.; Kuila, T.; Kim, N. H.; Lee, S. H.; Lee, J. H. Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes. Carbon 2015, 89, 328–339.

48

Yoon, S. -M.; Choi, W. M.; Baik, H.; Shin, H. -J.; Song, I.; Kwon, M. -S.; Bae, J. J.; Kim, H.; Lee, Y. H.; Choi, J. -Y. Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles. ACS Nano 2012, 6, 6803–6811.

49

Han, X.; Chen, H. X.; Zhang, Z. Q.; Huang, D. L.; Xu, J. F.; Li, C.; Chen, S. Y.; Yang, Y. Carbon-coated Si micrometer particles binding to reduced graphene oxide for a stable high-capacity lithium-ion battery anode. J. Mater. Chem. A 2016, 4, 17757–17763.

50

Wang, T.; Zhu, J.; Chen, Y.; Yang, H. G.; Qin, Y.; Li, F.; Cheng, Q. F.; Yu, X. Z.; Xu, Z.; Lu, B. Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes. J. Mater. Chem. A 2017, 5, 4809–4817.

51

Zhou, X. S.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Adv. Energy Mater. 2012, 2, 1086–1090.

File
nr-11-1-233_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 February 2017
Revised: 06 April 2017
Accepted: 11 April 2017
Published: 19 July 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was generously supported by Global Frontier R & D program on Center for Multiscale Energy System (NRF 2011-0031571) and NRF grant (NRF-2014K2A3A1000240) funded by the Korea government. Authors also would like to thank the Korean Basic Science Institute at Jeonju (SEM and HR-TEM analysis), Daejeon (TEM analysis), and Pusan (XPS analysis) and CCRF in DGIST.

Return