Journal Home > Volume 11 , Issue 1

Organolead halide perovskite solar cells have achieved a certified power-conversion efficiency (PCE) of 22.1% and are thus among the most promising candidates for next-generation photovoltaic devices. To date, most high-efficiency perovskite solar cells have employed arylamine-based hole-transport materials (HTMs), which are expensive and have a low mobility. The complicated doping procedures and the potentially stability-adverse dopants used in these HTMs are among the major bottlenecks for the commercialization of perovskite solar cells (PSCs). Herein, we present a polythiophene-based copolymer (PDVT-10) with a hole mobility up to 8.2 cm2·V-1·s-1 and a highest occupied molecular orbital level of -5.28 eV as a hole-transport layer (HTL) for a PSC. A device based on this new HTM exhibited a high PCE of 13.4% under 100 mW·cm-2 illumination, which is one of the highest PCEs reported for the dopant-free polymer-based HTLs. Moreover, PDVT-10 exhibited good solution processability, decent air stability, and thermal stability, making it a promising candidate as an HTM for PSCs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly π-extended copolymer as additive-free hole-transport material for perovskite solar cells

Show Author's information Jie Liu1,2Qianqing Ge1,2Weifeng Zhang1,2Jingyuan Ma1,2Jie Ding1,2Gui Yu1,2( )Jinsong Hu1,2( )
Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Nanostructure and NanotechnologyCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
University of Chinese Academy of SciencesBeijing100049China

Abstract

Organolead halide perovskite solar cells have achieved a certified power-conversion efficiency (PCE) of 22.1% and are thus among the most promising candidates for next-generation photovoltaic devices. To date, most high-efficiency perovskite solar cells have employed arylamine-based hole-transport materials (HTMs), which are expensive and have a low mobility. The complicated doping procedures and the potentially stability-adverse dopants used in these HTMs are among the major bottlenecks for the commercialization of perovskite solar cells (PSCs). Herein, we present a polythiophene-based copolymer (PDVT-10) with a hole mobility up to 8.2 cm2·V-1·s-1 and a highest occupied molecular orbital level of -5.28 eV as a hole-transport layer (HTL) for a PSC. A device based on this new HTM exhibited a high PCE of 13.4% under 100 mW·cm-2 illumination, which is one of the highest PCEs reported for the dopant-free polymer-based HTLs. Moreover, PDVT-10 exhibited good solution processability, decent air stability, and thermal stability, making it a promising candidate as an HTM for PSCs.

Keywords: stability, perovskite solar cell, hole-transport layer, dopant-free, PDVT-10

References(44)

1

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

2

Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

3

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

4

Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

5

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

6

Saliba, M.; Matsui, T.; Seo, J. -Y.; Domanski, K.; Correa-Baena, J. -P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.

7

Poglitsch, A.; Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (Ⅱ) observed by millimeter-wave spectroscopy. J. Chem. Phys. 1987, 87, 6373–6378.

8

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

9

Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

10

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

11

D'Innocenzo, V.; Grancini, G.; Alcocer, M. J.; Kandada, A. R.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 2014, 5, 3586.

12

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

13

Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623.

14
NREL efficiency chart. http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg (accessed Dec 20, 2016).
15

Liu, S. H.; You, P.; Li, J. H.; Li, J.; Lee, C. -S.; Ong, B. S.; Surya, C.; Yan, F. Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer. Energy Environ. Sci. 2015, 8, 1463–1470.

16

Li, Y. F. Enhanced efficiency of perovskite solar cells through improving active layer morphology by interfacial engineering. Sci. China Chem. 2015, 58, 830.

17

Xiao, J. Y.; Shi, J. J.; Li, D. M.; Meng, Q. B. Perovskite thin-film solar cell: Excitation in photovoltaic science. Sci. China Chem. 2015, 58, 221–238.

18

Seo, J.; Noh, J. H.; Seok, S. I. Rational strategies for efficient perovskite solar cells. Acc. Chem. Res. 2016, 49, 562–572.

19

Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J. -P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K. -H. et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat. Energy 2016, 1, 15017.

20

Liu, Y. S.; Chen, Q.; Duan, H. -S.; Zhou, H. P.; Yang, Y.; Chen, H. J.; Luo, S.; Song, T. -B.; Dou, L. T.; Hong, Z. R. et al. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. J. Mater. Chem. A 2015, 3, 11940–11947.

21

Zhang, H.; Shi, Y. T.; Yan, F.; Wang, L.; Wang, K.; Xing, Y. J.; Dong, Q. S.; Ma, T. L. A dual functional additive for the HTM layer in perovskite solar cells. Chem. Commun. 2014, 50, 5020–5022.

22

Zheng, L. L.; Chung, Y. H.; Ma, Y. Z.; Zhang, L. P.; Xiao, L. X.; Chen, Z. J.; Wang, S. F.; Qu, B.; Gong, Q. H. A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. Chem. Commun. 2014, 50, 11196–11199.

23

You, J. B.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y. M.; Chang, W. H.; Hong, Z. R.; Chen, H. J.; Zhou, H. P.; Chen, Q. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2015, 11, 75–81.

24

Fantacci, S.; De Angelis, F.; Nazeeruddin, M. K.; Grätzel, M. Electronic and optical properties of the Spiro-MeOTAD hole conductor in its neutral and oxidized forms: A DFT/TDDFT investigation. J. Phys. Chem. C 2011, 115, 23126–23133.

25

Hawash, Z.; Ono, L. K.; Raga, S. R.; Lee, M. V.; Qi, Y. B. Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-MeOTAD films. Chem. Mater. 2015, 27, 562–569.

26

Noh, J. H.; Jeon, N. J.; Choi, Y. C.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. J. Mater. Chem. A 2013, 1, 11842–11847.

27

Li, M. H.; Hsu, C. W.; Shen, P. S.; Cheng, H. M.; Chi, Y.; Chen, P.; Guo, T. F. Novel spiro-based hole transporting materials for efficient perovskite solar cells. Chem. Commun. 2015, 51, 15518–15521.

28

Choi, H.; Park, S.; Kang, M. S.; Ko, J. Efficient, symmetric oligomer hole transporting materials with different cores for high performance perovskite solar cells. Chem. Commun. 2015, 51, 15506–15509.

29

Abate, A.; Leijtens, T.; Pathak, S.; Teuscher, J.; Avolio, R.; Errico, M. E.; Kirkpatrik, J.; Ball, J. M.; Docampo, P.; McPherson, I. et al. Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 2572–2579.

30

Nguyen, W. H.; Bailie, C. D.; Unger, E. L.; Mcgehee, M. D. Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 2014, 136, 10996–11001.

31

Li, W. Z.; Dong, H. P.; Wang, L. D.; Li, N.; Guo, X. D.; Li, J. W.; Qiu, Y. Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. J. Mater. Chem. A 2014, 2, 13587–13592.

32

Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. Efficient inorganic–organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J. Am. Chem. Soc. 2013, 135, 19087–19090.

33

Rakstys, K.; Abate, A.; Dar, M. I.; Gao, P.; Jankauskas, V.; Jacopin, G.; Kamarauskas, E.; Kazim, S.; Ahmad, S.; Grätzel, M. et al. Triazatruxene-based hole transporting materials for highly efficient perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 16172–16178.

34

Malinauskas, T.; Saliba, M.; Matsui, T.; Daskeviciene, M.; Urnikaite, S.; Gratia, P.; Send, R.; Wonneberger, H.; Bruder, I.; Grätzel, M. et al. Branched methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials for high-performance perovskite solar cells. Energy Environ. Sci. 2016, 9, 1681–1686.

35

Song, Y. K.; Lv, S. T.; Liu, X. C.; Li, X. G.; Wang, S. R.; Wei, H. Y.; Li, D. M.; Xiao, Y.; Meng, Q. B. Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells. Chem. Commun. 2014, 50, 15239–15242.

36

Huang, C. Y.; Fu, W. F.; Li, C. Z.; Zhang, Z. Q.; Qiu, W. M.; Shi, M. M.; Heremans, P.; Jen, A. K. Y.; Chen, H. Z. Dopant-free hole-transporting material with a C3h symmetrical truxene core for highly efficient perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 2528–2531.

37

Yan, W. B.; Li, Y.; Ye, S. Y.; Li, Y. L.; Rao, H. X.; Liu, Z. W.; Wang, S. F.; Bian, Z. Q.; Huang, C. H. Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells. Nano Res. 2016, 9, 1600–1608.

38

Peng, H. T.; Sun, W. H.; Li, Y. L.; Ye, S. Y.; Rao, H. X.; Yan, W. B.; Zhou, H. P.; Bian, Z. Q.; Huang, C. H. Solution processed inorganic V2Ox as interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency. Nano Res. 2016, 9, 2960–2971.

39

Kim, G. -W.; Kang, G.; Kim, J.; Lee, G. -Y.; Kim, H. I.; Pyeon, L.; Lee, J.; Park, T. Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 2016, 9, 2326–2333.

40

Dubey, A.; Adhikari, N.; Venkatesan, S.; Gu, S. P.; Khatiwada, D.; Wang, Q.; Mohammad, L.; Kumar, M.; Qiao, Q. Q. Solution processed pristine PDPP3T polymer as hole transport layer for efficient perovskite solar cells with slower degradation. Sol. Energy Mater. Sol. Cells, 2016, 145, 193–199.

41

Chen, H. J.; Guo, Y. L.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H. T.; Liu, Y. Q. Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv. Mater. 2012, 24, 4618–4622.

42

Li, Z. H.; Liu, J.; Ma, J. Y.; Jiang, Y.; Ge, Q. Q.; Ding, J.; Hu, J. S.; Wan, L. J. Solvent-assisted preparation of high-performance mesoporous CH3NH3PbI3 perovskite solar cells. J. Nanosci. Nanotechnol. 2016, 16, 844–850.

43

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

44

Li, W. Z.; Fan, J. D.; Li, J. W.; Mai, Y. H.; Wang, L. D. Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J. Am. Chem. Soc. 2015, 137, 10399–10405.

File
nr-11-1-185_ESM.pdf (457.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 February 2017
Revised: 06 April 2017
Accepted: 06 April 2017
Published: 01 July 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2015CB932302), the National Natural Science Foundation of China (Nos. 21573249 and 21474116), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB12020100 and XDB12030100).

Return