Journal Home > Volume 11 , Issue 1

Herein, carbon nano-onions (CNOs) with different structures have been investigated as precursors for the synthesis of graphene quantum dots (GQDs). It was found that hollow CNOs yield GQDs with a uniform size distribution, whereas metal encapsulation in the CNO structure is disadvantageous for the same. Furthermore, the hollow CNOs are also advantageous for the synthesis of GQDs with a yellow-green hybrid luminescence and long-ranged excitation wavelength (λex)-independent photoluminescent (PL) behavior, in which the λex upper limit was 480 nm. These features enable safe sensing and cell tracking applications with a longer excitation wavelength in the visible light region. The potential applications of the synthesized GQDs as fluorescent sensing probes for detecting Cu(Ⅱ) ions and non-toxic cell imaging under visible light excitation have been demonstrated. This means that sensing and bioimaging can be accomplished in the natural environment with no need for UV excitation. This work provides a reference to researchers in tailoring CNO structures in terms of their inner space to synthesize GQDs with the desired luminescence behavior.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Graphene quantum dots derived from hollow carbon nano-onions

Show Author's information Chenguang Zhang1,3Jiajun Li2Xianshun Zeng1Zhihao Yuan1,3( )Naiqin Zhao2,4( )
School of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
School of Materials Science and EngineeringTianjin UniversityTianjin300072China
Tianjin Key Lab for Photoelectric Materials & DevicesTianjin300384China
Collaborative Innovation Center of Chemical Science and EngineeringTianjin UniversityTianjin300072China

Abstract

Herein, carbon nano-onions (CNOs) with different structures have been investigated as precursors for the synthesis of graphene quantum dots (GQDs). It was found that hollow CNOs yield GQDs with a uniform size distribution, whereas metal encapsulation in the CNO structure is disadvantageous for the same. Furthermore, the hollow CNOs are also advantageous for the synthesis of GQDs with a yellow-green hybrid luminescence and long-ranged excitation wavelength (λex)-independent photoluminescent (PL) behavior, in which the λex upper limit was 480 nm. These features enable safe sensing and cell tracking applications with a longer excitation wavelength in the visible light region. The potential applications of the synthesized GQDs as fluorescent sensing probes for detecting Cu(Ⅱ) ions and non-toxic cell imaging under visible light excitation have been demonstrated. This means that sensing and bioimaging can be accomplished in the natural environment with no need for UV excitation. This work provides a reference to researchers in tailoring CNO structures in terms of their inner space to synthesize GQDs with the desired luminescence behavior.

Keywords: graphene quantum dots, carbon nano-onions, fluorescent quenching, bioimaging

References(32)

1

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

2

Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

3

Zheng, M.; Ruan, S. B.; Liu, S.; Sun, T. T.; Qu, D.; Zhao, H. F.; Xie, Z. G.; Gao, H. L.; Jing, X. B.; Sun, Z. C. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 2015, 9, 11455–11461.

4

Park, Y.; Yoo, J.; Lim, B.; Kwon, W.; Rhee, S. W. Improving the functionality of carbon nanodots: Doping and surface functionalization. J. Mater. Chem. A 2016, 4, 11582–11603.

5

Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667.

6

Sun, Q. N.; Zhou, D.; Li, D.; Ji, W. Y.; Jing, P. T.; Han, D.; Liu, L.; Zeng, H. B.; Shen, D. Z. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv. Mater. 2016, 28, 3516–3521.

7

Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360–5363.

8

Tetsuka, H.; Nagoya, A.; Fukusumi, T.; Matsui, T. Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv. Mater. 2016, 28, 4632–4638.

9

Buzaglo, M.; Shtein, M.; Regev, O. Graphene quantum dots produced by microfluidization. Chem. Mater. 2016, 28, 21–24.

10

Hu, C.; Yu, C.; Li, M. Y.; Wang, X.; Yang, J. Y.; Zhao, Z. B.; Eychmüller, A.; Sun, Y. P.; Qiu, J. S. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(Ⅱ) detection. Small 2014, 10, 4926–4933.

11

Liu, Y. Y.; Kim, D. Y. Ultraviolet and blue emitting graphene quantum dots synthesized from carbon nano-onions and their comparison for metal ion sensing. Chem. Comm. 2015, 51, 4176–4179.

12

Wang, Z. G.; Fu, B. S.; Zou, S. W.; Duan, B.; Chang, C. Y.; Yang, B.; Zhou, X.; Zhang, L. Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. Nano Res. 2016, 9, 214–223.

13

Li, Y.; Zhao, Y.; Cheng, H. H.; Hu, Y.; Shi, G. Q.; Dai, L. M.; Qu, L. T. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 2012, 134, 15–18.

14

Zhao, Q. L.; Zhang, Z. L.; Huang, B. H.; Peng, J.; Zhang, M.; Pang, D. W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 2008, 5516–5518.

15

Arcudi, F.; Đorđević, L.; Prato, M. Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon nanodots. Angew. Chem., Int. Ed. 2016, 55, 2107–2112.

16

Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.

17

Hu, S. L.; Trin chi, A.; Atkin, P.; Cole, I. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew. Chem., Int. Ed. 2015, 54, 2970–2974.

18

Dong, Y. Q.; Chen, C. Q.; Zheng, X. T.; Gao, L. L.; Cui, Z. M.; Yang, H. B.; Guo, C. X.; Chi, Y. W.; Li, C. M. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem. 2012, 22, 8764–8766.

19

Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L. H.; Song, L.; Alemany, L. B.; Zhan, X. B.; Gao, G. H. et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 844–849.

20

Ye, R. Q.; Xiang, C. S.; Lin, J.; Peng, Z. W.; Huang, K. W.; Yan, Z.; Cook, N. P.; Samuel, E. L. G.; Hwang, C. C.; Ruan, G. D. et al. Coal as an abundant source of graphene quantum dots. Nat. Commun. 2013, 4, 2943.

21

Shenderova, O.; Grishko, V.; Cunningham, G.; Moseenkov, S.; McGuire, G.; Kuznestov, V. Onion-like carbon for terahertz electromagnetic shielding. Diam. Relat. Mater. 2008, 17, 462–466.

22

Lu, J.; Yeo, P. S. E.; Gan, C. K.; Wu, P.; Loh, K. P. Transforming C60 molecules into graphene quantum dots. Nat. Nanotechnol. 2011, 6, 247–252.

23

Li, Y.; Hu, Y.; Zhao, Y.; Shi, G. Q.; Deng, L. E.; Hou, Y. B.; Qu, L. T. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 2011, 23, 776–780.

24

Park, B.; Kim, S. J.; Sohn, J. S.; Nam, M. S.; Kang, S.; Jun, S. C. Surface plasmon enhancement of photoluminescence in photo-chemically synthesized graphene quantum dot and Au nanosphere. Nano Res. 2016, 9, 1866–1875.

25

Zhang, C. G.; Li, J. J.; Liu, E. Z.; He, C. N.; Shi, C. S.; Du, X. W.; Hauge, R. H.; Zhao, N. Q. Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon 2012, 50, 3513–3521.

26

Zhang, C. G.; Li, J. J.; Shi, C. S.; He, C. N.; Liu, E. Z.; Zhao, N. Q. Self-anchored catalysts for substrate-free synthesis of metal-encapsulated carbon nano-onions and study of their magnetic properties. Nano Res. 2016, 9, 1159–1172.

27

Zhang, C. G.; Li, J. J.; Shi, C. S.; He, C. N.; Liu, E. Z.; Zhao, N. Q. Effect of Ni, Fe and Fe-Ni alloy catalysts on the synthesis of metal contained carbon nano-onions and studies of their electrochemical hydrogen storage properties. J. Energy Chem. 2014, 23, 324–330.

28

Deng, L.; Wang, X. L.; Kuang, Y.; Wang, C.; Luo, L.; Wang, F.; Sun, X. M. Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Res. 2015, 8, 2810–2821.

29

Shang, J. J.; Xie, B. B.; Li, Y.; Wei, X.; Du, N.; Li, H. P.; Hou, W. G.; Zhang, R. J. Inflating strategy to form ultrathin hollow MnO2 nanoballoons. ACS Nano 2016, 10, 5916–5921.

30

Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

31

Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491.

32

Chien, C. T.; Li, S. S.; Lai, W. J.; Yeh, Y. C.; Chen, H. A.; Chen, I. S.; Chen, L. C.; Chen, K. H.; Nemoto, T.; Isoda, S. et al. Tunable photoluminescence from graphene oxide. Angew. Chem., Int. Ed. 2012, 51, 6662–6666.

File
nr-11-1-174_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 January 2017
Revised: 06 April 2017
Accepted: 09 April 2017
Published: 27 June 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

The authors acknowledge the finance support by the Natural Science Foundation of Tianjin City (No. 16JCYBJC41000) and support by Tianjin Key Subject for Materials Physics and Chemistry.

Return