Journal Home > Volume 11 , Issue 1

Carbon quantum dots (CQDs) have emerged as potential alternatives to classical metal-based semiconductor quantum dots (QDs) due to the abundance of their precursors, their ease of synthesis, high biocompatibility, low cost, and particularly their strong photoresponsiveness, tunability, and stability. Light is a versatile, tunable stimulus that can provide spatiotemporal control. Its interaction with CQDs elicits interesting responses such as wavelength-dependent optical emissions, charge/electron transfer, and heat generation, processes that are suitable for a range of photomediated bioapplications. The carbogenic core and surface characteristics of CQDs can be tuned through versatile engineering strategies to endow specific optical and physicochemical properties, while conjugation with specific moieties can enable the design of targeted probes. Fundamental approaches to tune the responses of CQDs to photo-interactions and the design of bionanoprobes are presented, which enable biomedical applications involving diagnostics and therapeutics. These strategies represent comprehensive platforms for engineering multifunctional probes for nanomedicine, and the design of QD probes with a range of metal-free and emerging 2D materials.


menu
Abstract
Full text
Outline
About this article

Engineering carbon quantum dots for photomediated theranostics

Show Author's information Mahbub HassanVincent G. Gomes( )Alireza DehghaniSara M. Ardekani
School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia

Abstract

Carbon quantum dots (CQDs) have emerged as potential alternatives to classical metal-based semiconductor quantum dots (QDs) due to the abundance of their precursors, their ease of synthesis, high biocompatibility, low cost, and particularly their strong photoresponsiveness, tunability, and stability. Light is a versatile, tunable stimulus that can provide spatiotemporal control. Its interaction with CQDs elicits interesting responses such as wavelength-dependent optical emissions, charge/electron transfer, and heat generation, processes that are suitable for a range of photomediated bioapplications. The carbogenic core and surface characteristics of CQDs can be tuned through versatile engineering strategies to endow specific optical and physicochemical properties, while conjugation with specific moieties can enable the design of targeted probes. Fundamental approaches to tune the responses of CQDs to photo-interactions and the design of bionanoprobes are presented, which enable biomedical applications involving diagnostics and therapeutics. These strategies represent comprehensive platforms for engineering multifunctional probes for nanomedicine, and the design of QD probes with a range of metal-free and emerging 2D materials.

Keywords: carbon quantum dots, nanobiophotonics, therapeutics, diagnostics, nanomedicine

References(222)

1

Brown, C. T. A.; Deckert, V.; Sergeev, A. M.; Zheltikov, A. M. Nanobiophotonics: Photons that shine their light on the life at the nanoscale. J. Biophotonics 2010, 3, 639–640.

2

Feldmann, C. Luminescent nanomaterials. Nanoscale 2011, 3, 1947–1948.

3

Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

4

Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768.

5

Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E. P.; Zboril, R.; Rogach, A. L. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 2014, 9, 590–603.

6

Wang, X.; Cao, L.; Lu, F. S.; Meziani, M. J.; Li, H. T.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y. P. Photoinduced electron transfers with carbon dots. Chem. Commun. 2009, 3774–3776.

7

Yuan, F. L.; Li, S. H.; Fan, Z. T.; Meng, X. Y.; Fan, L. Z.; Yang, S. H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today 2016, 11, 565–586.

8

Yu, P.; Wen, X. M.; Toh, Y. R.; Tang, J. Temperature- dependent fluorescence in carbon dots. J. Phys. Chem. C2012, 116, 25552–25557.

9

Wang, J. Q.; Choi, H. S.; Wáng, Y. X. J. Exponential growth of publications on carbon nanodots by Chinese authors. J. Thorac. Dis. 2015, 7, E201–E205.

10

Ding, C. Q.; Zhu, A. W.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 2014, 47, 20–30.

11

Wang, S. J.; Cole, I. S.; Zhao, D. Y.; Li, Q. The dual roles of functional groups in the photoluminescence of graphene quantum dots. Nanoscale 2016, 8, 7449–7458.

12

Ye, R. Q.; Xiang, C. S.; Lin, J.; Peng, Z. W.; Huang, K. W.; Yan, Z.; Cook, N. P.; Samuel, E. L. G.; Hwang, C. C.; Ruan, G. D. et al. Coal as an abundant source of graphene quantum dots. Nat. Commun. 2013, 4, 2943.

13

Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

14

Demichelis, F.; Schreiter, S.; Tagliaferro, A. Photoluminescence in a-C: H films. Phys. Rev. B 1995, 51, 2143–2147.

15

Robertson, J.; Amaratunga, G. A. J. Photoluminescence behavior of hydrogenated amorphous carbon. J. Appl. Phys. 1996, 80, 2998–3003.

16

Dong, Y. Q.; Cai, J. H.; You, X.; Chi, Y. W. Sensing applications of luminescent carbon based dots. Analyst 2015, 140, 7468–7486.

17

Liu, F.; Jang, M. H.; Ha, H. D.; Kim, J. H.; Cho, Y. H.; Seo, T. S. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: Origin of blue and green luminescence. Adv. Mater. 2013, 25, 3657–3662.

18

Zhuo, S. J.; Shao, M. W.; Lee, S. T. Upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis. ACS Nano 2012, 6, 1059–1064.

19

Kwon, W.; Lim, J.; Lee, J.; Park, T.; Rhee, S. W. Sulfurincorporated carbon quantum dots with a strong longwavelength absorption band. J. Mater. Chem. C2013, 1, 2002–2008.

20

Wang, W.; Li, Y. M.; Cheng, L.; Cao, Z. Q.; Liu, W. G. Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J. Mater. Chem. B 2014, 2, 46–48.

21

Shan, X. Y.; Chai, L. J.; Ma, J. J.; Qian, Z. S.; Chen, J. R.; Feng, H. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst 2014, 139, 2322–2325.

22

Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800–7804.

23

Hu, S. L.; Tian, R. X.; Dong, Y. G.; Yang, J. L.; Liu, J.; Chang, Q. Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots. Nanoscale 2013, 5, 11665–11671.

24

Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491.

25

Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I. S.; Chen, C. W.; Chhowalla, M. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 2010, 22, 505–509.

26

Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Watersoluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed. 2010, 49, 4430–4434.

27

Zhang, J. M.; Abbasi, F.; Claverie, J. An efficient templating approach for the synthesis of redispersible size-controllable carbon quantum dots from graphitic polymeric micelles. Chem. —Eur. J. 2015, 21, 15142–15147.

28

Sun, Y. P.; Wang, X.; Lu, F. S.; Cao, L.; Meziani, M. J.; Luo, P. G.; Gu, L. R.; Veca, L. M. Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J. Phys. Chem. C 2008, 112, 18295–18298.

29

Liu, R. H.; Huang, H.; Li, H. T.; Liu, Y.; Zhong, J.; Li, Y. Y.; Zhang, S.; Kang, Z. H. Metal nanoparticle/carbon quantum dot composite as a photocatalyst for highefficiency cyclohexane oxidation. ACS Catal. 2014, 4, 328–336.

30

Liu, J. H.; Yang, S. T.; Chen, X. X.; Wang, H. F. Fluorescent carbon dots and nanodiamonds for biological imaging: Preparation, application, pharmacokinetics and toxicity. Curr. Drug Metab. 2012, 13, 1046–1056.

31

Wang, H.; Zhou, S. Q. Magnetic and fluorescent carbonbased nanohybrids for multi-modal imaging and magnetic field/NIR light responsive drug carriers. Biomater. Sci. 2016, 4, 1062–1073.

32

Sun, Y. P.; Wang, P.; Lu, Z. M.; Yang, F.; Meziani, M. J.; LeCroy, G. E.; Liu, Y.; Qian, H. J. Host-guest carbon dots for enhanced optical properties and beyond. Sci. Rep. 2015, 5, 12354.

33

Loukanov, A.; Sekiya, R.; Yoshikawa, M.; Kobayashi, N.; Moriyasu, Y.; Nakabayashi, S. Photosensitizer-conjugated ultrasmall carbon nanodots as multifunctional fluorescent probes for bioimaging. J. Phys. Chem. C 2016, 120, 15867– 15874.

34

Dimos, K. Carbon quantum dots: Surface passivation and functionalization. Curr. Org. Chem. 2016, 20, 682–695.

35

Wang, X.; Cao, L.; Yang, S. T.; Lu, F. S.; Meziani, M. J.; Tian, L. L.; Sun, K. W.; Bloodgood, M. A.; Sun, Y. P. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew. Chem. 2010, 122, 5438–5442.

36

Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.

37

Dong, Y. Q.; Wang, R. X.; Li, G. L.; Chen, C. Q.; Chi, Y. W.; Chen, G. N. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal. Chem. 2012, 84, 6220–6224.

38

Liu, C.; Bao, L.; Tang, B.; Zhao, J. Y.; Zhang, Z. L.; Xiong, L. H.; Hu, J.; Wu, L. L.; Pang, D. W. Fluorescenceconverging carbon nanodots-hybridized silica nanosphere. Small 2016, 12, 4702–4706.

39

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

40

Zhang, J.; Yu, S. H. Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater. Today 2016, 19, 382–393.

41

Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620–1636.

42

Pu, S. C.; Yang, M. J.; Hsu, C. C.; Lai, C. W.; Hsieh, C. C.; Lin, S. H.; Cheng, Y. M.; Chou, P. T. The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots. Small 2006, 2, 1308–1313.

43

Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436.

44

Wen, X. M.; Yu, P.; Toh, Y. R.; Ma, X. Q.; Tang, J. On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem. Commun. 2014, 50, 4703–4706.

45

Liu, R. L.; Wu, D. Q.; Liu, S. H.; Koynov, K.; Knoll, W.; Li, Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. 2009, 121, 4668–4671.

46

Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, C.; Yan, X. M.; Wu, M. H. Observation of pH-, solvent-, spin-, and excitationdependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 2010, 46, 3681–3683.

47

Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.

48

Zhao, W.; Song, C.; Pehrsson, P. E. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J. Am. Chem. Soc. 2002, 124, 12418–12419.

49

Zhu, S. J.; Zhang, J. H.; Qiao, C. Y.; Tang, S. J.; Li, Y. F.; Yuan, W. J.; Li, B.; Tian, L.; Liu, F.; Hu, R. et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011, 47, 6858–6860.

50

Fan, L. S.; Hu, Y. W.; Wang, X.; Zhang, L. L.; Li, F. H.; Han, D. X.; Li, Z. G.; Zhang, Q. X.; Wang, Z. X.; Niu, L. Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 2012, 101, 192–197.

51

Khan, S.; Gupta, A.; Verma, N. C.; Nandi, C. K. Timeresolved emission reveals ensemble of emissive states as the origin of multicolor fluorescence in carbon dots. Nano Lett. 2015, 15, 8300–8305.

52

Mao, Q. X.; Shuang, E.; Xia, J. M.; Song, R. S.; Shu, Y.; Chen, X. W.; Wang, J. H. Hydrophobic carbon nanodots with rapid cell penetrability and tunable photoluminescence behavior for in vitro and in vivo imaging. Langmuir 2016, 32, 12221–12229.

53

Pan, D. Y.; Guo, L.; Zhang, J. C.; Xi, C.; Xue, Q.; Huang, H.; Li, J. H.; Zhang, Z. W.; Yu, W. J.; Chen, Z. W. et al. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J. Mater. Chem. 2012, 22, 3314–3318.

54

Mu, Y.; Wang, N.; Sun, Z. C.; Wang, J.; Li, J. Y.; Yu, J. H. Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence. Chem. Sci. 2016, 7, 3564–3568.

55

Credi, A. Photochemistry of supramolecular systems and nanostructured assemblies. In memory of Professor Nick Turro (1938–2012). Chem. Soc. Rev. 2014, 43, 4003–4004.

56

Xu, J.; Sahu, S.; Cao, L.; Bunker, C. E.; Peng, G.; Liu, Y. M.; Fernando, K. A. S.; Wang, P.; Guliants, E. A.; Meziani, M. J. et al. Efficient fluorescence quenching in carbon dots by surface-doped metals-disruption of excited state redox processes and mechanistic implications. Langmuir 2012, 28, 16141–16147.

57

Yu, P.; Wen, X. M.; Toh, Y. R.; Lee, Y. C.; Huang, K. Y.; Huang, S. J.; Shrestha, S.; Conibeer, G.; Tang, J. Efficient electron transfer in carbon nanodot–graphene oxide nanocomposites. J. Mater. Chem. C2014, 2, 2894–2901.

58

Sheng, Z. H.; Song, L.; Zheng, J. X.; Hu, D. H.; He, M.; Zheng, M. B.; Gao, G. H.; Gong, P.; Zhang, P. F.; Ma, Y. F. et al. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 2013, 34, 5236–5243.

59

Yang, K.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2013, 42, 530–547.

60

Chen, D. Q.; Wang, C.; Nie, X.; Li, S. M.; Li, R. M.; Guan, M. R.; Liu, Z.; Chen, C. Y.; Wang, C. R.; Shu, C. Y. et al. Photoacoustic imaging guided near-infrared photothermal therapy using highly water-dispersible single-walled carbon nanohorns as theranostic agents. Adv. Funct. Mater. 2014, 24, 6621–6628.

61

Kim, J. W.; Galanzha, E. I.; Shashkov, E. V.; Moon, H. M.; Zharov, V. P. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol. 2009, 4, 688–694.

62

Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586.

63

Ge, J. C.; Jia, Q. Y.; Liu, W. M.; Guo, L.; Liu, Q. Y.; Lan, M. H.; Zhang, H. Y.; Meng, X. M.; Wang, P. F. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater. 2015, 27, 4169–4177.

64

Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

65

Hou, J.; Wang, W.; Zhou, T. Y.; Wang, B.; Li, H. Y.; Ding, L. Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence. Nanoscale 2016, 8, 11185– 11193.

66

Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic Dirac billiard in graphene quantum dots. Science 2008, 320, 356–358.

67

Song, Z. Q.; Quan, F. Y.; Xu, Y. H.; Liu, M. L.; Cui, L.; Liu, J. Q. Multifunctional N, S co-doped carbon quantum dots with pH-and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 2016, 104, 169–178.

68

Das, A.; Snee, P. T. Synthetic developments of nontoxic quantum dots. ChemPhysChem 2016, 17, 598–617.

69

Bao, L.; Zhang, Z. L.; Tian, Z. Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B. P.; Pang, D. W. Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism. Adv. Mater. 2011, 23, 5801–5806.

70

Zhao, L. X.; Di, F.; Wang, D. B.; Guo, L. H.; Yang, Y.; Wan, B.; Zhang, H. Chemiluminescence of carbon dots under strong alkaline solutions: Anovel insight into carbon dot optical properties. Nanoscale 2013, 5, 2655–2658.

71

Yang, Y. X.; Wu, D. Q.; Han, S.; Hu, P. F.; Liu, R. L. Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft–hard template approach. Chem. Commun. 2013, 49, 4920–4922.

72

Hola, K.; Bourlinos, A. B.; Kozak, O.; Berka, K.; Siskova, K. M.; Havrdova, M.; Tucek, J.; Safarova, K.; Otyepka, M.; Giannelis, E. P. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO induced red-shift emission. Carbon 2014, 70, 279–286.

73

Wei, W. L.; Xu, C.; Wu, L.; Wang, J. S.; Ren, J. S.; Qu, X. G. Non-enzymatic-browning-reaction: A versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display. Sci. Rep. 2014, 4, 3564.

74

Ju, J.; Chen, W. Synthesis of highly fluorescent nitrogendoped graphene quantum dots for sensitive, label-free detection of Fe (Ⅲ) in aqueous media. Biosens. Bioelectron. 2014, 58, 219–225.

75

Sk, M. A.; Ananthanarayanan, A.; Huang, L.; Lim, K. H.; Chen, P. Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2014, 2, 6954–6960.

76

Peng, H.; Li, Y.; Jiang, C. L.; Luo, C. H.; Qi, R. J.; Huang, R.; Duan, C. G.; Travas-Sejdic, J. Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors. Carbon 2016, 100, 386–394.

77

Sarkar, S.; Sudolská, M.; Dubecký, M.; Reckmeier, C. J.; Rogach, A. L.; Zbořil, R.; Otyepka, M. Graphitic nitrogen doping in carbon dots causes red-shifted absorption. J. Phys. Chem. C2016, 120, 1303–1308.

78

Reckmeier, C. J.; Wang, Y.; Zboril, R.; Rogach, A. L. Influence of doping and temperature on solvatochromic shifts in optical spectra of carbon dots. J. Phys. Chem. C2016, 120, 10591–10604.

79

Yan, X.; Cui, X.; Li, L. S. Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 2010, 132, 5944–5945.

80

Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Photoluminescencetunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667.

81

Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360–5363.

82

Zheng, M.; Ruan, S. B.; Liu, S.; Sun, T. T.; Qu, D.; Zhao, H. F.; Xie, Z. G.; Gao, H. L.; Jing, X. B.; Sun, Z. C. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 2015, 9, 11455–11461.

83

Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.

84

Liu, W. J.; Li, C.; Ren, Y. J.; Sun, X. B.; Pan, W.; Li, Y. H.; Wang, J. P.; Wang, W. J. Carbon dots: Surface engineering and applications. J. Mater. Chem. B2016, 4, 5772–5788.

85

Anilkumar, P.; Wang, X.; Cao, L.; Sahu, S.; Liu, J. H.; Wang, P.; Korch, K.; Tackett, K. N., Ⅱ; Parenzan, A.; Sun, Y. P. Toward quantitatively fluorescent carbon-based "quantum" dots. Nanoscale 2011, 3, 2023–2027.

86

Shen, J. H.; Zhu, Y. H.; Yang, X. L.; Zong, J.; Zhang, J. M.; Li, C. Z. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 2012, 36, 97–101.

87

Wu, Y. F.; Wu, H. C.; Kuan, C. H.; Lin, C. J.; Wang, L. W.; Chang, C. W.; Wang, T. W. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci. Rep. 2016, 6, 21170.

88

Arcudi, F.; Đorđević, L.; Prato, M. Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon NanoDots. Angew. Chem. 2016, 128, 2147–2152.

89

Anilkumar, P.; Cao, L.; Yu, J. J.; Tackett, K. N., Ⅱ; Wang, P.; Meziani, M. J.; Sun, Y. P. Crosslinked carbon dots as ultra-bright fluorescence probes. Small 2013, 9, 545–551.

90

Wang, X. D.; Wang, D.; Guo, Y. L.; Yang, C. D.; Iqbal, A.; Liu, W. S.; Qin, W. W.; Yan, D.; Guo, H. C. Imidazole derivative-functionalized carbon dots: Using as a fluorescent probe for detecting water and imaging of live cells. Dalton Trans. 2015, 44, 5547–5554.

91

Li, Q.; Ohulchanskyy, T. Y.; Liu, R. L.; Koynov, K.; Wu, D. Q.; Best, A.; Kumar, R.; Bonoiu, A.; Prasad, P. N. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C2010, 114, 12062–12068.

92

Gonçalves, H.; Jorge, P. A. S.; Fernandes, J. R. A.; da Silva, J.C.G. E. Hg(Ⅱ) sensing based on functionalized carbon dots obtained by direct laser ablation. Sensor. Actuat. B: Chem. 2010, 145, 702–707.

93

Gonçalves, H.; Estevesda Silva, J.C.G. Fluorescent carbon dots capped with PEG200 and mercaptosuccinic acid. J. Fluoresc. 2010, 20, 1023–1028.

94

Yang, L.; Jiang, W. H.; Qiu, L. P.; Jiang, X. W.; Zuo, D. Y.; Wang, D. K.; Yang, L. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale 2015, 7, 6104–6113.

95

Thakur, M.; Mewada, A.; Pandey, S.; Bhori, M.; Singh, K.; Sharon, M.; Sharon, M. Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater. Sci. Eng. : C2016, 67, 468–477.

96

Wang, F.; Xie, Z.; Zhang, H.; Liu, C. Y.; Zhang, Y.G. Highly luminescent organosilane-functionalized carbon dots. Adv. Funct. Mater. 2011, 21, 1027–1031.

97

Wang, W. T.; Kim, T.; Yan, Z. F.; Zhu, G. S.; Cole, I.; Nguyen, N. T.; Li, Q. Carbon dots functionalized by organosilane with double-sided anchoring for nanomolar Hg2+ detection. J. Colloid Interface Sci. 2015, 437, 28–34.

98

Huang, Y. F.; Zhou, X.; Zhou, R.; Zhang, H.; Kang, K. B.; Zhao, M.; Peng, Y.; Wang, Q.; Zhang, H. L.; Qiu, W. Y. One-Pot synthesis of highly luminescent carbon quantum dots and their nontoxic ingestion by zebrafish for in vivo imaging. Chem. —Eur. J. 2014, 20, 5640–5648.

99

Wang, Y.; Li, Z. H.; Wang, J.; Li, J. H.; Lin, Y. H. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011, 29, 205–212.

100

Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 2014, 43, 744–764.

101

Sperling, R. A.; Parak, W. J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. A: Math. Phys. Eng. Sci. 2010, 368, 1333–1383.

102

Li, H. L.; Zhang, Y. W.; Wang, L.; Tian, J. Q.; Sun, X. P. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem. Commun. 2011, 47, 961–963.

103

Liu, J. H.; Li, J. S.; Jiang, Y.; Yang, S.; Tan, W. H.; Yang, R. H. Combination of π–π stacking and electrostatic repulsion between carboxylic carbon nanoparticles and fluorescent oligonucleotides for rapid and sensitive detection of thrombin. Chem. Commun. 2011, 47, 11321–11323.

104

Wang, Y. H.; Bao, L.; Liu, Z. H.; Pang, D. W. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal. Chem. 2011, 83, 8130–8137.

105

Qu, Q.; Zhu, A. W.; Shao, X. L.; Shi, G. Y.; Tian, Y. Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem. Commun. 2012, 48, 5473–5475.

106

Kong, B.; Zhu, A. W.; Ding, C. Q.; Zhao, X. M.; Li, B.; Tian, Y. Carbon dot-based inorganic–organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv. Mater. 2012, 24, 5844–5848.

107

Liu, J. M.; Lin, L. P.; Wang, X. X.; Lin, S. Q.; Cai, W. L.; Zhang, L. H.; Zheng, Z. Y. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst 2012, 137, 2637–2642.

108

Yu, C. M.; Li, X. Z.; Zeng, F.; Zheng, F. Y.; Wu, S.Z. Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem. Commun. 2013, 49, 403–405.

109

Wang, R. J.; Xu, Y.; Zhang, T.; Jiang, Y. Rapid and sensitive detection of Salmonella typhimurium using aptamerconjugated carbon dots as fluorescence probe. Anal. Methods 2015, 7, 1701–1706.

110

Wisdom, G. B. Enzyme-immunoassay. Clin. Chem. 1976, 22, 1243–1255.

111

Zhu, L.; Cui, X.; Wu, J.; Wang, Z. N.; Wang, P. Y.; Hou, Y.; Yang, M. Fluorescence immunoassay based on carbon dots as labels for the detection of human immunoglobulin G. Anal. Methods 2014, 6, 4430–4436.

112

Geho, D.; Lahar, N.; Gurnani, P.; Huebschman, M.; Herrmann, P.; Espina, V.; Shi, A.; Wulfkuhle, J.; Garner, H.; Petricoin, E. et al. Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reversephase protein microarrays. Bioconjugate Chem. 2005, 16, 559–566.

113

Wu, Y. Y.; Wei, P.; Pengpumkiat, S.; Schumacher, E. A.; Remcho, V. T. Development of a carbon dot (C-dot)-linked immunosorbent assay for the detection of human α-fetoprotein. Anal. Chem. 2015, 87, 8510–8516.

114

Kurdekar, A.; Chunduri, L. A. A.; Bulagonda, E. P.; Haleyurgirisetty, M. K.; Kamisetti, V.; Hewlett, I. K. Comparative performance evaluation of carbon dot-based paper immunoassay on Whatman filter paper and nitrocellulose paper in the detection of HIV infection. Microfluid. Nanofluid. 2016, 20, 99.

115

Bu, D.; Zhuang, H. S.; Yang, G. X.; Ping, X. X. An immunosensor designed for polybrominated biphenyl detection based on fluorescence resonance energy transfer (FRET) between carbon dots and gold nanoparticles. Sensor. Actuat. B: Chem. 2014, 195, 540–548.

116

Yu, M.; Stott, S.; Toner, M.; Maheswaran, S.; Haber, D. A. Circulating tumor cells: Approaches to isolation and characterization. J. Cell Biol. 2011, 192, 373–382.

117

Milosavljevic, V.; Nguyen, H. V.; Michalek, P.; Moulick, A.; Kopel, P.; Kizek, R.; Adam, V. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization. Chem. Pap. 2015, 69, 192–201.

118

Noh, E. H.; Ko, H. Y.; Lee, C. H.; Jeong, M. S.; Chang, Y. W.; Kim, S. Carbon nanodot-based self-delivering microRNA sensor to visualize microRNA124a expression during neurogenesis. J. Mater. Chem. B2013, 1, 4438–4445.

119

Xu, B. L.; Zhao, C. Q.; Wei, W. L.; Ren, J. S.; Miyoshi, D.; Sugimoto, N.; Qu, X. G. Aptamer carbon nanodot sandwich used for fluorescent detection of protein. Analyst 2012, 137, 5483–5486.

120

Liu, C. J.; Zhang, P.; Zhai, X. Y.; Tian, F.; Li, W. C.; Yang, J. H.; Liu, Y.; Wang, H. B.; Wang, W.; Liu, W. G. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012, 33, 3604–3613.

121

Feng, L. Y.; Zhao, A. D.; Ren, J. S.; Qu, X. G. Lighting up left-handed Z-DNA: Photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations. Nucleic Acids Res. 2013, 41, 7987–7996.

122

Xu, M. D.; Gao, Z. Q.; Zhou, Q.; Lin, Y. X.; Lu, M. H.; Tang, D. P. Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5'-triphosphate with unmodified gold nanoparticles. Biosens. Bioelectron. 2016, 86, 978–984.

123

Tang, C.; Qian, Z. S.; Huang, Y. Y.; Xu, J. M.; Ao, H.; Zhao, M. Z.; Zhou, J.; Chen, J. R.; Feng, H. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition. Biosens. Bioelectron. 2016, 83, 274–280.

124

Li, G. L.; Fu, H. L.; Chen, X. J.; Gong, P. W.; Chen, G.; Xia, L.; Wang, H.; You, J. M.; Wu, Y. N. Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect. Anal. Chem. 2016, 88, 2720–2726.

125

Lu, S. M.; Li, G. L.; Lv, Z. X.; Qiu, N. N.; Kong, W. H.; Gong, P. W.; Chen, G.; Xia, L.; Guo, X. X.; You, J. M. et al. Facile and ultrasensitive fluorescence sensor platform for tumor invasive biomaker β-glucuronidase detection and inhibitor evaluation with carbon quantum dots based on inner-filter effect. Biosens. Bioelectron. 2016, 85, 358–362.

126

Loo, A. H.; Sofer, Z.; Bouša, D.; Ulbrich, P.; Bonanni, A.; Pumera, M. Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl. Mater. Interfaces 2016, 8, 1951–1957.

127

Zhan, Z. X.; Cai, J.; Wang, Q.; Su, Y. Y.; Zhang, L. C.; Lv, Y. Green synthesis of fluorescence carbon nanoparticles from yum and application in sensitive and selective detection of ATP. Luminescence 2016, 31, 626–632.

128

Zhu, X. H.; Zhao, T. B.; Nie, Z.; Miao, Z.; Liu, Y.; Yao, S. Z. Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells. Nanoscale 2016, 8, 2205–2211.

129

Tian, T.; Zhong, Y. P.; Deng, C.; Wang, H.; He, Y.; Ge, Y. L.; Song, G. W. Brightly near-infrared to blue emission tunable silver-carbon dot nanohybrid for sensing of ascorbic acid and construction of logic gate. Talanta 2017, 162, 135–142.

130

Chai, L. L.; Zhou, J.; Feng, H.; Tang, C.; Huang, Y. Y.; Qian, Z.S. Functionalized carbon quantum dots with dopamine for tyrosinase activity monitoring and inhibitor screening: In vitro and intracellular investigation. ACS Appl. Mater. Interfaces 2015, 7, 23564–23574.

131

Chen, H.; Xie, Y. J.; Kirillov, A.M.; Liu, L. L.; Yu, M. H.; Liu, W. S.; Tang, Y. A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker. Chem. Commun. 2015, 51, 5036–5039.

132

Shen, P. F.; Xia, Y.S. Synthesis-modification integration: Onestep fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal. Chem. 2014, 86, 5323–5329.

133

Wu, G. F.; Zeng, F.; Yu, C. M.; Wu, S. Z.; Li, W. S. A ratiometric fluorescent nanoprobe for H2O2 sensing and in vivo detection of drug-induced oxidative damage to the digestive system. J. Mater. Chem. B 2014, 2, 8528–8537.

134

Zhu, A. W.; Qu, Q.; Shao, X. L.; Kong, B.; Tian, Y. Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew. Chem. 2012, 124, 7297–7301.

135

Shi, Y. P.; Pan, Y.; Zhang, H.; Zhang, Z. M.; Li, M. J.; Yi, C. Q.; Yang, M. S. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens. Bioelectron. 2014, 56, 39–45.

136

Weng, C. I.; Chang, H. T.; Lin, C. H.; Shen, Y. W.; Unnikrishnan, B.; Li, Y. J.; Huang, C. C. One-step synthesis of biofunctional carbon quantum dots for bacterial labeling. Biosens. Bioelectron. 2015, 68, 1–6.

137

Song, Y. B.; Zhu, S. J.; Yang, B. Bioimaging based on fluorescent carbon dots. RSC Adv. 2014, 4, 27184–27200.

138

Luo, P. G.; Sahu, S.; Yang, S. T.; Sonkar, S. K.; Wang, J. P.; Wang, H. F.; LeCroy, G. E.; Cao, L.; Sun, Y. P. Carbon "quantum" dots for optical bioimaging. J. Mater. Chem. B 2013, 1, 2116–2127.

139

Luo, P. G.; Yang, F.; Yang, S. T.; Sonkar, S. K.; Yang, L. J.; Broglie, J. J.; Liu, Y.; Sun, Y. P. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv. 2014, 4, 10791–10807.

140

Wang, J. L.; Qiu, J. J. A review of carbon dots in biological applications. J. Mater. Sci. 2016, 51, 4728–4738.

141

Choi, H. S.; Liu, W. H.; Liu, F. B.; Nasr, K.; Misra, P.; Bawendi, M. G.; Frangioni, J. V. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 2010, 5, 42–47.

142

He, H.; Wang, X. J.; Feng, Z. Z.; Cheng, T. T.; Sun, X.; Sun, Y. W.; Xia, Y. Q.; Wang, S. J.; Wang, J. Y.; Zhang, X. D. Rapid microwave-assisted synthesis of ultra-bright fluorescent carbon dots for live cell staining, cell-specific targeting and in vivo imaging. J. Mater. Chem. B2015, 3, 4786–4789.

143

Chen, H. M.; Wang, G. D.; Sun, X. L.; Todd, T.; Zhang, F.; Xie, J.; Shen, B. Z. Mesoporous silica as nanoreactors to prepare Gd-encapsulated carbon dots of controllable sizes and magnetic properties. Adv. Funct. Mater. 2016, 26, 3973–3982.

144

Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013, 3, 1473.

145

Yang, Q. X.; Wei, L.; Zheng, X. F.; Xiao, L. H. Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins. Sci. Rep. 2015, 5, 17727.

146

Lee, C. H.; Rajendran, R.; Jeong, M. S.; Ko, H. Y.; Joo, J. Y.; Cho, S.; Chang, Y. W.; Kim, S. Bioimaging of targeting cancers using aptamer-conjugated carbon nanodots. Chem. Commun. 2013, 49, 6543–6545.

147

Han, B. F.; Wang, W. X.; Wu, H. Y.; Fang, F.; Wang, N. Z.; Zhang, X. J.; Xu, S. K. Polyethyleneimine modified fluorescent carbon dots and their application in cell labeling. Colloids Surf. B: Biointerfaces 2012, 100, 209–214.

148

Nandi, S.; Malishev, R.; Bhunia, S. K.; Kolusheva, S.; Jopp, J.; Jelinek, R. Lipid-bilayer dynamics probed by a carbon dot-phospholipid conjugate. Biophys. J. 2016, 110, 2016–2025.

149

Zheng, X. T.; Than, A.; Ananthanaraya, A.; Kim, D. H.; Chen, P. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano 2013, 7, 6278–6286.

150

Chizhik, A. M.; Stein, S.; Dekaliuk, M. O.; Battle, C.; Li, W. X.; Huss, A.; Platen, M.; Schaap, I. A. T.; Gregor, I.; Demchenko, A. P. et al. Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots. Nano Lett. 2016, 16, 237–242.

151

Kang, Y. F.; Fang, Y. W.; Li, Y. H.; Li, W.; Yin, X. B. Nucleus-staining with biomolecule-mimicking nitrogendoped carbon dots prepared by a fast neutralization heat strategy. Chem. Commun. 2015, 51, 16956–16959.

152

Tong, G. S.; Wang, J. X.; Wang, R. B.; Guo, X. Q.; He, L.; Qiu, F.; Wang, G.; Zhu, B. S.; Zhu, X. Y.; Liu, T. Amorphous carbon dots with high two-photon fluorescence for cellular imaging passivated by hyperbranched poly(amino amine). J. Mater. Chem. B 2015, 3, 700–706.

153

Gong, X. J.; Lu, W. J.; Liu, Y.; Li, Z. B.; Shuang, S. M.; Dong, C.; Choi, M. M. F. Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging. J. Mater. Chem. B 2015, 3, 6813–6819.

154

Jin, X. Z.; Sun, X. B.; Chen, G.; Ding, L. X.; Li, Y. H.; Liu, Z. K.; Wang, Z. J.; Pan, W.; Hu, C. H.; Wang, J. P. pH-sensitive carbon dots for the visualization of regulation of intracellular pH inside living pathogenic fungal cells. Carbon 2015, 81, 388–395.

155

Yuan, F. L.; Ding, L.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Zhou, S. X.; Fang, D. C.; Yang, S. H. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 2015, 7, 11727–11733.

156

Alsawat, M.; Altalhi, T.; Kumeria, T.; Santos, A.; Losic, D. Carbon nanotube-nanoporous anodic alumina composite membranes with controllable inner diameters and surface chemistry: Influence on molecular transport and chemical selectivity. Carbon 2015, 93, 681–692.

157

Yuan, Y. H.; Liu, Z. X.; Li, R. S.; Zou, H. Y.; Lin, M.; Liu, H.; Huang, C. Z. Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states. Nanoscale 2016, 8, 6770–6776.

158

Bandi, R.; Gangapuram, B. R.; Dadigala, R.; Eslavath, R.; Singh, S. S.; Guttena, V. Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Adv. 2016, 6, 28633–28639.

159

Shi, B. F.; Su, Y. B.; Zhang, L. L.; Huang, M. J.; Liu, R. J.; Zhao, S. L. Nitrogen and phosphorus co-doped carbon nanodots as a novel fluorescent probe for highly sensitive detection of Fe3+ in human serum and living cells. ACS Appl. Mater. Interfaces 2016, 8, 10717–10725.

160

Ballou, B.; Ernst, L. A.; Andreko, S.; Fitzpatrick, J. A.; Lagerholm, B. C.; Waggoner, A. S.; Bruchez, M. P. Imaging vasculature and lymphatic flow in mice using quantum dots. In Bioluminescence: Methods and Protocols. Rich, P. B.; Douillet, C., Eds.; Humana Press: New York, 2009; pp 63–74.

DOI
161

Langer, R.; Tirrell, D. A. Designing materials for biology and medicine. Nature 2004, 428, 487–492.

162

Bagalkot, V.; Zhang, L. F.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langer, R.; Farokhzad, O. C. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007, 7, 3065–3070.

163

Matai, I.; Sachdev, A.; Gopinath, P. Self-assembled hybrids of fluorescent carbon dots and PAMAM dendrimers for epirubicin delivery and intracellular imaging. ACS Appl. Mater. Interfaces 2015, 7, 11423–11435.

164

Chowdhuri, A. R.; Tripathy, S.; Haldar, C.; Roy, S.; Sahu, S. K. Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery. J. Mater. Chem. B 2015, 3, 9122–9131.

165

Mewada, A.; Pandey, S.; Thakur, M.; Jadhav, D.; Sharon, M. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J. Mater. Chem. B 2014, 2, 698–705.

166

Liu, Z. N.; Chen, X.; Zhang, X. J.; Gooding, J. J.; Zhou, Y. S. Carbon-quantum-dots-loaded mesoporous silica nanocarriers with pH-switchable zwitterionic surface and enzyme-responsive pore-cap for targeted imaging and drug delivery to tumor. Adv. Healthc. Mater. 2016, 5, 1401–1407.

167

Kim, J.; Park, J.; Kim, H.; Singha, K.; Kim, W. J. Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA. Biomaterials 2013, 34, 7168–7180.

168

Feng, T.; Ai, X. Z.; An, G. H.; Yang, P. P.; Zhao, Y. L. Charge-Convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 2016, 10, 4410–4420.

169

Krishna, A. S.; Radhakumary, C.; Priya, S. S.; Ramesan, R. M.; Kunnatheeri, S. Methotrexate anchored carbon dots as theranostic probes: Digitonin conjugation enhances cellular uptake and cytotoxicity. RSC Adv. 2016, 6, 56313–56318.

170

Wang, B. B.; Wang, S. J.; Wang, Y. F.; Lv, Y.; Wu, H.; Ma, X. J.; Tan, M. Q. Highly fluorescent carbon dots for visible sensing of doxorubicin release based on efficient nanosurface energy transfer. Biotechnol. Lett. 2016, 38, 191–201.

171

Samantara, A. K.; Maji, S.; Ghosh, A.; Bag, B.; Dash, R.; Jena, B. K. Good's buffer derived highly emissive carbon quantum dots: Excellent biocompatible anticancer drug carrier. J. Mater. Chem. B 2016, 4, 2412–2420.

172

Lai, C. W.; Hsiao, Y. H.; Peng, Y. K.; Chou, P. T. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J. Mater. Chem. 2012, 22, 14403–14409.

173

Feng, T.; Ai, X. Z.; Ong, H.; Zhao, Y. L. Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS Appl. Mater. Interfaces 2016, 8, 18732–18740.

174

Zeng, Q. H.; Shao, D.; He, X.; Ren, Z. Y.; Ji, W. Y.; Shan, C. X.; Qu, S. N.; Li, J.; Chen, L.; Li, Q. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J. Mater. Chem. B 2016, 4, 5119–5126.

175

Zhou, J.; Deng, W. W.; Wang, Y.; Cao, X.; Chen, J. J.; Wang, Q.; Xu, W. Q.; Du, P.; Yu, Q. T.; Chen, J. X. et al. Cationic carbon quantum dots derived from alginate for gene delivery: One-step synthesis and cellular uptake. Acta Biomater. 2016, 42, 209–219.

176

Hu, L. M.; Sun, Y.; Li, S. L.; Wang, X. L.; Hu, K. L.; Wang, L. R.; Liang, X. J.; Wu, Y. Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon 2014, 67, 508–513.

177

Pierrat, P.; Wang, R. R.; Kereselidze, D.; Lux, M.; Didier, P.; Kichler, A.; Pons, F.; Lebeau, L. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials 2015, 51, 290–302.

178

Wang, Q.; Zhang, C. L.; Shen, G. X.; Liu, H. Y.; Fu, H. L.; Cui, D. X. Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells. J. Nanobiotechnol. 2014, 12, 58.

179

Wang, Z. G.; Fu, B. S.; Zou, S. W.; Duan, B.; Chang, C. Y.; Yang, B.; Zhou, X.; Zhang, L. Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. Nano Res. 2016, 9, 214–223.

180

Wang, Q. L.; Huang, X. X.; Long, Y. J.; Wang, X. L.; Zhang, H. J.; Zhu, R.; Liang, L. P.; Teng, P.; Zheng, H. Z. Hollow luminescent carbon dots for drug delivery. Carbon 2013, 59, 192–199.

181

Hsu, P. C.; Chen, P. C.; Ou, C. M.; Chang, H. Y.; Chang, H. T. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J. Mater. Chem. B 2013, 1, 1774–1781.

182

Bing, W.; Sun, H. J.; Yan, Z. Q.; Ren, J. S.; Qu, X. G. Programmed bacteria death induced by carbon dots with different surface charge. Small 2016, 12, 4713–4718.

183

Li, S. H.; Wang, L. Y.; Chusuei, C. C.; Suarez, V. M.; Blackwelder, P. L.; Micic, M.; Orbulescu, J.; Leblanc, R. M. Nontoxic carbon dots potently inhibit human insulin fibrillation. Chem. Mater. 2015, 27, 1764–1771.

184

Karthik, S.; Saha, B.; Ghosh, S. K.; Singh, N. D. P. Photoresponsive quinoline tethered fluorescent carbon dots for regulated anticancer drug delivery. Chem. Commun. 2013, 49, 10471–10473.

185

Manthe, R. L.; Foy, S. P.; Krishnamurthy, N.; Sharma, B.; Labhasetwar, V. Tumor ablation and nanotechnology. Mol. Pharmaceutics 2010, 7, 1880–1898.

186

Fisher, A. M. R.; Murphree, A.L.; Gomer, C. J. Clinical and preclinical photodynamic therapy. Lasers Surg. Med. 1995, 17, 2–31.

187

Huang, P.; Lin, J.; Wang, X. S.; Wang, Z.; Zhang, C. L.; He, M.; Wang, K.; Chen, F.; Li, Z. M.; Shen, G. X. et al. Light-triggered theranostics based on photosensitizerconjugated carbon dots for simultaneous enhancedfluorescence imaging and photodynamic therapy. Adv. Mater. 2012, 24, 5104–5110.

188

Fowley, C.; Nomikou, N.; McHale, A. P.; McCaughan, B.; Callan, J. F. Extending the tissue penetration capability of conventional photosensitisers: Acarbon quantum dot– protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy. Chem. Commun. 2013, 49, 8934–8936.

189

Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.

190

Ge, J. C.; Lan, M. H.; Liu, W. M.; Jia, Q. Y.; Guo, L.; Zhou, B. J.; Meng, X. M.; Niu, G. L.; Wang, P. F. Graphene quantum dots as efficient, metal-free, visible-light-active photocatalysts. Sci. China Mater. 2016, 59, 12–19.

191

Meziani, M. J.; Dong, X. L.; Zhu, L.; Jones, L. P.; LeCroy, G. E.; Yang, F.; Wang, S. Y.; Wang, P.; Zhao, Y. P.; Yang, L. J. et al. Visible-light-activated bactericidal functions of carbon "Quantum" dots. ACS Appl. Mater. Interfaces 2016, 8, 10761–10766.

192

Zheng, D. W.; Li, B.; Li, C. X.; Fan, J. X.; Lei, Q.; Li, C.; Xu, Z. S.; Zhang, X. Z. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano 2016, 10, 8715–8722.

193

Zhang, J. Z. Biomedical applications of shape-controlled plasmonic nanostructures: Acase study of hollow gold nanospheres for photothermal ablation therapy of cancer. J. Phys. Chem. Lett. 2010, 1, 686–695.

194

Saxton, R. E.; Paiva, M. B.; Lufkin, R. B.; Castro, D. J. Laser photochemotherapy: Aless invasive approach for treatment of cancer. Semin. Surg. Oncol. 1995, 11, 283–289.

195

Nurunnabi, M.; Khatun, Z.; Reeck, G. R.; Lee, D. Y.; Lee, Y. K. Photoluminescent graphene nanoparticles for cancer phototherapy and imaging. ACS Appl. Mater. Interfaces 2014, 6, 12413–12421.

196

Li, Y.; Zhang, X. Y.; Zheng, M.; Liu, S.; Xie, Z. G. Dopamine carbon nanodots as effective photothermal agents for cancer therapy. RSC Adv. 2016, 6, 54087–54091.

197

Li, D.; Han, D.; Qu, S. N.; Liu, L.; Jing, P. T.; Zhou, D.; Ji, W. Y.; Wang, X. Y.; Zhang, T. F.; Shen, D. Z. Supra- (carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light: Sci. Appl. 2016, 5, e16120.

198

Wang, H.; Sun, Y. B.; Yi, J. H.; Fu, J. P.; Di, J.; del Carmen Alonso, A.; Zhou, S. Q. Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy. Biomaterials 2015, 53, 117–126.

199

Lemaster, J. E.; Jokerst, J. V. What is new in nanoparticle- based photoacoustic imaging? WIREs: Nanomed. Nanobiotechnol. 2017, 9, e1404.

200

Miao, Z. H.; Wang, H.; Yang, H.; Li, Z.; Zhen, L.; Xu, C. Y. Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2016, 8, 15904–15910.

201

Wu, L.; Cai, X.; Nelson, K.; Xing, W. X.; Xia, J.; Zhang, R. Y.; Stacy, A.J.; Luderer, M.; Lanza, G. M.; Wang, L. V. et al. A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging. Nano Res. 2013, 6, 312–325.

202

Louie, A. Multimodality imaging probes: Design and challenges. Chem. Rev. 2010, 110, 3146–3195.

203

Bourlinos, A. B.; Bakandritsos, A.; Kouloumpis, A.; Gournis, D.; Krysmann, M.; Giannelis, E. P.; Polakova, K.; Safarova, K.; Hola, K.; Zboril, R. Gd(Ⅲ)-doped carbon dots as a dual fluorescent-MRI probe. J. Mater. Chem. 2012, 22, 23327–23330.

204

Xu, Y.; Jia, X. H.; Yin, X. B.; He, X. W.; Zhang, Y. K. Carbon quantum dot stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging. Anal. Chem. 2014, 86, 12122–12129.

205

Gong, N. Q.; Wang, H.; Li, S.; Deng, Y. L.; Chen, X. A.; Ye, L.; Gu, W. Microwave-assisted polyol synthesis of gadolinium-doped green luminescent carbon dots as a bimodal nanoprobe. Langmuir 2014, 30, 10933–10939.

206

Shi, Y. P.; Pan, Y.; Zhong, J.; Yang, J.; Zheng, J. H.; Cheng, J. L.; Song, R.; Yi, C. Q. Facile synthesis of gadolinium (Ⅲ) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging. Carbon 2015, 93, 742–750.

207

Liu, X. L.; Jiang, H.; Ye, J.; Zhao, C. Q.; Gao, S. P.; Wu, C. Y.; Li, C. H.; Li, J. C.; Wang, X. M. Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple-modal in vivo bioimaging. Adv. Funct. Mater. 2016, 26, 8694–8706.

208

Mohapatra, S.; Rout, S. R.; Das, R. K.; Nayak, S.; Ghosh, S. K. Highly hydrophilic luminescent magnetic mesoporous carbon nanospheres for controlled release of anticancer drug and multimodal imaging. Langmuir 2016, 32, 1611–1620.

209

Zheng, M.; Liu, S.; Li, J.; Qu, D.; Zhao, H. F.; Guan, X.; Hu, X. L.; Xie, Z. G.; Jing, X. B.; Sun, Z. C. Integrating oxaliplatin with highly luminescent carbon dots: An unprecedented theranostic agent for personalized medicine. Adv. Mater. 2014, 26, 3554–3560.

210

Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y. C.; Wang, Y. L.; Zhao, D. Y.; Zheng, G. F. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv. Mater. 2013, 25, 6569–6574.

211

Mukherjee, P.; Misra, S. K.; Gryka, M. C.; Chang, H. H.; Tiwari, S.; Wilson, W. L.; Scott, J. W.; Bhargava, R.; Pan, D. Tunable luminescent carbon nanospheres with well-defined nanoscale chemistry for synchronized imaging and therapy. Small 2015, 11, 4691–4703.

212

Wang, H.; Shen, J.; Li, Y. Y.; Wei, Z. Y.; Cao, G. X.; Gai, Z.; Hong, K. L.; Banerjee, P.; Zhou, S. Q. Magnetic iron oxide–fluorescent carbon dots integrated nanoparticles for dual-modal imaging, near-infrared light-responsive drug carrier and photothermal therapy. Biomater. Sci. 2014, 2, 915–923.

213

Wang, H.; Mararenko, A.; Cao, G. X.; Gai, Z.; Hong, K. L.; Banerjee, P.; Zhou, S. Q. Multifunctional 1D magnetic and fluorescent nanoparticle chains for enhanced MRI, fluorescent cell imaging, and combined photothermal/ chemotherapy. ACS Appl. Mater. Interfaces 2014, 6, 15309– 15317.

214

Zhou, L.; Dong, K.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for dual-triggered synergistic cancer therapy. Carbon 2015, 82, 479–488.

215

Jia, Q. Y.; Ge, J. C.; Liu, W. M.; Liu, S.; Niu, G. L.; Guo, L.; Zhang, H. Y.; Wang, P. F. Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/ photothermal therapy. Nanoscale 2016, 8, 13067–13077.

216

Kleinauskas, A.; Rocha, S.; Sahu, S.; Sun, Y. P.; Juzenas, P. Carbon-core silver-shell nanodots as sensitizers for phototherapy and radiotherapy. Nanotechnology 2013, 24, 325103.

217

Zhang, J. H.; Niu, A. P.; Li, J.; Fu, J. W.; Xu, Q.; Pei, D. S. In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish. Sci. Rep. 2016, 6, 37860.

218

Wang, J.; He, Y. Carbon dots: Synthesis, bioimaging, and biosafety assessment. In Biomedical Applications and Toxicology of Carbon Nanomaterials. Chen, C. Y.; Wang, H. F., Eds.; Wiley-VCH Verlag GmbH & Co. : Weinheim, Germany, 2016; pp 429–486.

DOI
219

Zhao, A. D.; Chen, Z. W.; Zhao, C. Q.; Gao, N.; Ren, J. S.; Qu, X. G. Recent advances in bioapplications of C-dots. Carbon 2015, 85, 309–327.

220

Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D. et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part. Fibre Toxicol. 2005, 2, 8.

221

Zhang, Z. W.; Duan, Y.; Yu, Y.; Yan, Z. Y.; Chen, J. Q. Carbon quantum dots: Synthesis, characterization, and assessment of cytocompatibility. J. Mater. Sci. : Mater. Med. 2015, 26, 213.

222

Huang, X. L.; Zhang, F.; Zhu, L.; Choi, K. Y.; Guo, N.; Guo, J. X.; Tackett, K.; Anilkumar, P.; Liu, G.; Quan, Q. M. et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 2013, 7, 5684–5693.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 January 2017
Revised: 04 April 2017
Accepted: 09 April 2017
Published: 17 August 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

The authors acknowledge the support of postgraduate scholarships for conducting this work. There are no conflicts of interest to declare.

Return