Journal Home > Volume 11 , Issue 1

The development of effective catalysts for the catalytic conversion of the harmful nitrophenol (NP) into the useful aminophenol (AP) has received extensive interest. Herein, we report the easy and large-scale synthesis of strongly coupled Ag/TiO2 heterojunctions based on the coordinated action of organic components with a multi-kind metal precursor. The heterojunctions were effective and stable catalysts for the photothermal catalytic reduction of 4-NP to 4-AP. In the synthesis, critic acid, ethylene glycol, AgNO3, and tetrabutyl titanate were dissolved and coordinated in water. Under heating, a precursor gel having a uniform distribution of Ag and Ti was gradually formed. Via calcination in air, the Ti precursor was transformed into TiO2, accompanied by the reduction of Ag+ to Ag nanoparticles. The formation of Ag/TiO2 composites with intimate interface contact benefited from the uniform distribution of different components in the precursor gel. The Ag/TiO2 functioned as an effective catalyst for the reduction of 4-NP, exhibiting higher activity than the many reported Ag-based catalysts. The catalytic reaction over Ag/TiO2 had a small t0 with good activity and reuse performance. After 10 cycles of reuse, the conversion efficiency exhibited no obvious change. Importantly, the conversion of 4-NP was significantly enhanced under light irradiation provided by a 150-W Xe lamp (the visible light from cutoff have equal function), but ultraviolet light did not promote the conversion. The conversion time was reduced from 620 to 270 s with light irradiation (15 ℃). The reaction rate under light irradiation (0.014 s-1) was approximately three times higher than that in the dark at 15 ℃ (0.0044 s-1) and even better than that in the dark at 25 ℃ (0.01 s-1). A series of experiments indicated that the light irradiation promoted the conversion of 4-NP because of the localized surface plasmon resonance effect of Ag, which generated hot e- and h+ particles and local heating around the particles via their absorption of the light.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Strongly coupled Ag/TiO2 heterojunctions for effective and stable photothermal catalytic reduction of 4-nitrophenol

Show Author's information Ying Gu1Yanqing Jiao2Xiaoguang Zhou1( )Aiping Wu2Bater Buhe2Honggang Fu2( )
College of ScienceNortheast Forestry UniversityHarbin150040China
Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaHeilongjiang UniversityHarbin150080China

Abstract

The development of effective catalysts for the catalytic conversion of the harmful nitrophenol (NP) into the useful aminophenol (AP) has received extensive interest. Herein, we report the easy and large-scale synthesis of strongly coupled Ag/TiO2 heterojunctions based on the coordinated action of organic components with a multi-kind metal precursor. The heterojunctions were effective and stable catalysts for the photothermal catalytic reduction of 4-NP to 4-AP. In the synthesis, critic acid, ethylene glycol, AgNO3, and tetrabutyl titanate were dissolved and coordinated in water. Under heating, a precursor gel having a uniform distribution of Ag and Ti was gradually formed. Via calcination in air, the Ti precursor was transformed into TiO2, accompanied by the reduction of Ag+ to Ag nanoparticles. The formation of Ag/TiO2 composites with intimate interface contact benefited from the uniform distribution of different components in the precursor gel. The Ag/TiO2 functioned as an effective catalyst for the reduction of 4-NP, exhibiting higher activity than the many reported Ag-based catalysts. The catalytic reaction over Ag/TiO2 had a small t0 with good activity and reuse performance. After 10 cycles of reuse, the conversion efficiency exhibited no obvious change. Importantly, the conversion of 4-NP was significantly enhanced under light irradiation provided by a 150-W Xe lamp (the visible light from cutoff have equal function), but ultraviolet light did not promote the conversion. The conversion time was reduced from 620 to 270 s with light irradiation (15 ℃). The reaction rate under light irradiation (0.014 s-1) was approximately three times higher than that in the dark at 15 ℃ (0.0044 s-1) and even better than that in the dark at 25 ℃ (0.01 s-1). A series of experiments indicated that the light irradiation promoted the conversion of 4-NP because of the localized surface plasmon resonance effect of Ag, which generated hot e- and h+ particles and local heating around the particles via their absorption of the light.

Keywords: 4-nitrophenol, Ag, TiO2, heterojunction, photothermal catalysis

References(77)

1

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

2

Wang, Y. D.; Tao, Z. C.; Wu, B. S.; Xu, J.; Huo, C. F.; Li, K.; Chen, H. M.; Yang, Y.; Li, Y. W. Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization. J. Catal. 2015, 322, 1–13.

3

Mitsudome, T.; Mikami, Y.; Matoba, M.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Design of a silver-cerium dioxide core–shell nanocomposite catalyst for chemoselective reduction reactions. Angew. Chem., Int. Ed. 2012, 51, 136–139.

4

Wen, Z. H.; Liu, J.; Li, J. H. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv. Mater. 2008, 20, 743–747.

5

Yamamoto, S. I.; Kinoshita, H.; Hashimoto, H.; Nishina, Y. Facile preparation of Pd nanoparticles supported on single- layer graphene oxide and application for the Suzuki–Miyaura cross-coupling reaction. Nanoscale 2014, 6, 6501–6505.

6

Jiang, B. J.; Song, S. Z.; Wang, J. Q.; Xie, Y.; Chu, W. Y.; Li, H. F.; Xu, H.; Tian, C. G.; Fu, H. G. Nitrogen-doped graphene supported Pd@PdO core–shell clusters for C-C coupling reactions. Nano Res. 2014, 7, 1280–1290.

7

Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res. 2016, 9, 329–343.

8

Sharma, S.; Park, J.; Park, E.; Kim, A.; Kim, M.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Palladium-catalyzed oxidative acylation of N-benzyltriflamides with aldehydes via C–H bond activation. Adv. Synth. Catal. 2013, 355, 332–336.

9

Dong, Z. P.; Le, X. D.; Liu, Y. S.; Dong, C. X.; Ma, J. T. Metal organic framework derived magnetic porous carbon composite supported gold and palladium nanoparticles as highly efficient and recyclable catalysts for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. J. Mater. Chem. A 2014, 2, 18775–18785.

10

Qi, H. T.; Yu, P.; Wang, Y. X.; Han, G. C.; Liu, H. B.; Yi, Y. P.; Li, Y. L.; Mao, L. Q. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J. Am. Chem. Soc. 2015, 137, 5260–5263.

11

Yang, Y.; Zhang, W.; Zhang, Y.; Zheng, A. M.; Sun, H.; Li, X. S.; Liu, S. Y.; Zhang, P. F.; Zhang, X. A single Au nanoparticle anchored inside the porous shell of periodic mesoporous organosilica hollow spheres. Nano Res. 2015, 8, 3404–3411.

12

Feng, J.; Handa, S.; Gallou, F.; Lipshutz, B. H. Safe and selective nitro group reductions catalyzed by sustainable and recyclable Fe/ppm Pd nanoparticles in water at room temperature. Angew. Chem., Int. Ed. 2016, 55, 8979–8983.

13

Li, H. J.; Wu, H. X.; Zhai, Y. J.; Xu, X. L.; Jin, Y. D. Synthesis of monodisperse plasmonic Au core–Pt shell concave nanocubes with superior catalytic and electrocatalytic activity. ACS Catal. 2013, 3, 2045–2051.

14

Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365–1372.

15

Liu, W. J.; Tian, K.; Jiang, H.; Yu, H. Q. Harvest of Cu NP anchored magnetic carbon materials from Fe/Cu preloaded biomass: Their pyrolysis, characterization, and catalytic activity on aqueous reduction of 4-nitrophenol. Green Chem. 2014, 16, 4198–4205.

16

Dou, L. G.; Zhang, H. Facile assembly of nanosheet array-like CuMgAl-layered double hydroxide/rGO nanohybrids for highly efficient reduction of 4-nitrophenol. J. Mater. Chem. A 2016, 4, 18990–19002.

17

Wang, F.; Song, S. Y.; Li, K.; Li, J. Q.; Pan, J.; Yao, S.; Ge, X.; Feng, J.; Wang, X.; Zhang, H. J. A "solid dual- ions-transformation" route to S, N co-doped carbon nanotubes as highly efficient "metal-free" catalysts for organic reactions. Adv. Mater. 2016, 28, 10679–10683.

18

Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Catalysis by metallic nanoparticles in aqueous solution: Model reactions. Chem. Soc. Rev. 2012, 41, 5577–5587.

19

Gao, D. W.; Zhang, X.; Dai, X. P.; Qin, Y. C.; Duan, A. J.; Yu, Y. B.; Zhuo, H. Y.; Zhao, H. R.; Zhang, P. F.; Li, J. M. et al. Morphology-selective synthesis of active and durable gold catalysts with high catalytic performance in the reduction of 4-nitrophenol. Nano Res. 2016, 9, 3099–3115.

20

Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W. Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Res. 2015, 8, 3992–4006.

21

Rodrigues, T. S.; da Silva, A. G. M.; Gonçalves, M. C.; Fajardo, H. V.; Balzer, R.; Probst, L. F. D.; Camargo, P. H. C. AgPt hollow nanodendrites: Synthesis and uniform dispersion over SiO2 support for catalytic applications. ChemNanoMat 2015, 1, 46–51.

22

Lv, J. J.; Wang, A. J.; Ma, X. H.; Xiang, R. Y.; Chen, J. R.; Feng, J. J. One-pot synthesis of porous Pt-Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 290–296.

23

Zhang, Z. C.; Liu, Y.; Chen, B.; Gong, Y.; Gu, L.; Fan, Z. X.; Yang, N. L.; Lai, Z. C.; Chen, Y.; Wang, J. et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Adv. Mater. 2016, 28, 10282–10286.

24

Guardia, L.; Paredes, J. I.; Munuera, J. M.; Villar-Rodil, S.; Ayán-Varela, M.; Martínez-Alonso, A.; Tascón, J. M. D. Chemically exfoliated MoS2 nanosheets as an efficient catalyst for reduction reactions in the aqueous phase. ACS Appl. Mater. Interfaces 2014, 6, 21702–21710.

25

Dong, X. Y.; Gao, Z. W.; Yang, K. F.; Zhang, W. Q.; Xu, L. W. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol. 2015, 5, 2554–2574.

26

Gan, L.; Yang, M. J.; Ke, X.; Cui, G. F.; Chen, X. D.; Gupta, S.; Kellogg, W.; Higgins, D.; Wu, G. Mesoporous Ag nanocubes synthesized via selectively oxidative etching at room temperature for surface-enhanced Raman spectroscopy. Nano Res. 2015, 8, 2351–2362.

27

Narayanan, R. K.; Devaki, S. J. Brawny silver-hydrogel based nanocatalyst for reduction of nitrophenols: Studies on kinetics and mechanism. Ind. Eng. Chem. Res. 2015, 54, 1197–1203.

28

Muniz-Miranda, M. SERS investigation on the adsorption and photoreaction of 4-nitroanisole in Ag hydrosols. J. Raman Spectro. 2013, 44, 1416–1421.

29

Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 2010, 26, 2885–2893.

30

Elias, W. C.; Eising, R.; Silva, T. R.; Albuquerque, B. L.; Martendal, E.; Meier, L.; Domingos, J. B. Screening the formation of silver nanoparticles using a new reaction kinetics multivariate analysis and assessing their catalytic activity in the reduction of nitroaromatic compounds. J. Phys. Chem. C 2014, 118, 12962–12971.

31

Hu, H. W.; Xin, J. H.; Hu, H. PAM/graphene/Ag ternary hydrogel: Synthesis, characterization and catalytic application. J. Mater. Chem. A 2014, 2, 11319–11333.

32

Ansar, S. M.; Kitchens, C. L. Impact of gold nanoparticle stabilizing ligands on the colloidal catalytic reduction of 4-nitrophenol. ACS Catal. 2016, 6, 5553–5560.

33

Zheng, Y.; Wang, A. Q. Ag nanoparticle-entrapped hydrogel as promising material for catalytic reduction of organic dyes. J. Mater. Chem. 2012, 22, 16552–16559.

34

Ai, L. H.; Jiang, J. Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel. Bioresour. Technol. 2013, 132, 374–377.

35

Chen, J.; Zhao, D. M.; Diao, Z. D.; Wang, M.; Shen, S. H. Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: A case study of (Co, Ni) Fe2O4 modification. Sci. Bull. 2016, 61, 292–301.

36

Fu, Q.; Wagner, T. Interaction of nanostructured metal overlayers with oxide surfaces. Surf. Sci. Rep. 2007, 62, 431–498.

37

Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763–1774.

38

Liu, X.; Cheng, H. M.; Cui, P. Catalysis by silver nanoparticles/porous silicon for the reduction of nitroaromatics in the presence of sodium borohydride. App. Surf. Sci. 2014, 292, 695–701.

39

Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Metal/ semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 2014, 26, 5274–5309.

40

Li, J. T.; Cushing, S. K.; Bright, J.; Meng, F.; Senty, T. R.; Zheng, P.; Bristow, A. D.; Wu, N. Q. Ag@Cu2O core–shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 2013, 3, 47–51.

41

Andreou, D.; Iordanidou, D.; Tamiolakis, I.; Armatas, G. S.; Lykakis, I. N. Reduction of nitroarenes into aryl amines and N-aryl hydroxylamines via activation of NaBH4 and ammonia-borane complexes by Ag/TiO2 catalyst. Nanomaterials 2016, 6, 54.

42

Zheng, Z. K.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M=Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem. 2011, 21, 9079–9087.

43

Selvam, K.; Swaminathan, M. Cost effective one-pot photocatalytic synthesis of quinaldines from nitroarenes by silver loaded TiO2. J. Mol. Catal. A 2011, 351, 52–61.

44

Xin, B. F.; Jing, L. Q.; Ren, Z. Y.; Wang, B. Q.; Fu, H. G. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J. Phys. Chem. B 2005, 109, 2805–2809.

45

Zhou, W.; Li, T.; Wang, J. Q.; Qu, Y.; Pan, K.; Xie, Y.; Tian, G. H.; Wang, L.; Ren, Z. Y.; Jiang, B. J. et al. Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res. 2014, 7, 731–742.

46

Ma, J. Q.; Guo, X. H.; Zhang, Y. Y.; Ge, H. G. Catalytic performance of TiO2@Ag composites prepared by modified photodeposition method. Chem. Eng. J. 2014, 258, 247–253.

47

Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.

48

Wang, Y. L.; Jiang, X. C.; Xia, Y. N. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc. 2003, 125, 16176–16177.

49

Tian, C. G.; Li, W.; Zhang, Q.; Pan, K.; Fu, H. G. Controllable fabrication of various ZnO micro/nanostructures from a wire-like Zn–EG–AC precursor via a facile solution- based route. Mater. Res. Bull. 2011, 46, 1283–1289.

50

Qu, Y.; Zhou, W.; Pan, K.; Tian, C. G.; Ren, Z. Y.; Dong, Y. Z.; Fu, H. G. Hierarchical anatase TiO2 porous nanopillars with high crystallinity and controlled length: An effective candidate for dye-sensitized solar-cells. Phys. Chem. Chem. Phys. 2010, 12, 9205–9212.

51

Hong, Y.; Tian, C. G.; Jiang, B. J.; Wu, A. P.; Zhang, Q.; Tian, G. H.; Fu, H. G. Facile synthesis of sheet-like ZnO assembly composed of small ZnO particles for highly efficient photocatalysis. J. Mater. Chem. A 2013, 1, 5700–5708.

52

Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410–9431.

53

Eising, R.; Signori, A. M.; Fort, S.; Domingos, J. B. Development of catalytically active silver colloid nanoparticles stabilized by dextran. Langmuir 2011, 27, 11860–11866.

54

Zhu, M. Y.; Wang, C. J.; Meng, D. H.; Diao, G. W. In situ synthesis of silver nanostructures on magnetic Fe3O4@C core–shell nanocomposites and their application in catalytic reduction reactions. J. Mater. Chem. A 2013, 1, 2118–2125.

55

Fang, Y. X.; Wang, E. K. Simple and direct synthesis of oxygenous carbon supported palladium nanoparticles with high catalytic activity. Nanoscale 2013, 5, 1843–1848.

56

Yang, F.; Chi, C.; Wang, C. X.; Wang, Y.; Li, Y. F. High graphite N content in nitrogen-doped graphene as an efficient metal-free catalyst for reduction of nitroarenes in water. Green Chem. 2016, 18, 4254–4262.

57

Zhao, Y. F.; Zhao, B.; Liu, J. J.; Chen, G. B.; Gao, R.; Yao, S. Y.; Li, M. Z.; Zhang, Q. H.; Gu, L.; Xie, J. L. et al. Oxide-modified nickel photocatalysts for the production of hydrocarbons in visible light. Angew. Chem., Int. Ed. 2016, 55, 4215–4219.

58

Shang, L.; Tong, B.; Yu, H. J.; Waterhouse, G. I. N.; Zhou, C.; Zhao, Y. F.; Tahir, M.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1501241.

59

Wu, B. H.; Liu, D. Y.; Mubeen, S.; Chuong, T. T.; Moskovits, M.; Stucky, G. D. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J. Am. Chem. Soc. 2016, 138, 1114–1117.

60

Wen, T.; Zhang, H.; Chong, Y.; Wamer, W. G.; Yin, J. J.; Wu, X. C. Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation. Nano Res. 2016, 9, 1663–1673.

61

Baffou, G.; Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 2014, 43, 3898–3907.

62

Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

63

Long, R.; Rao, Z. L.; Mao, K. K.; Li, Y.; Zhang, C.; Liu, Q. L.; Wang, C. M.; Li, Z. Y.; Wu, X. J.; Xiong, Y. J. Efficient coupling of solar energy to catalytic hydrogenation by using well-designed palladium nanostructures. Angew. Chem., Int. Ed. 2015, 54, 2425–2430.

64

Vijayaraghavan, P.; Liu, C. H.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv. Mater. 2014, 26, 6689–6695.

65

Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103.

66

Guo, X. W.; Hao, C. H.; Wang, C. Y.; Sarina, S.; Guo, X. N.; Guo, X. Y. Visible light-driven photocatalytic Heck reaction over carbon nanocoil supported Pd nanoparticles. Catal. Sci. Technol. 2016, 6, 7738–7743.

67

Sarina, S.; Zhu, H. Y.; Jaatinen, E.; Xiao, Q.; Liu, H. W.; Jia, J. F.; Chen, C.; Zhao, J. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J. Am. Chem. Soc. 2013, 135, 5793–5801.

68

Xiao, Q.; Sarina, S.; Jaatinen, E.; Jia, J. F.; Arnold, D. P.; Liu, H. W.; Zhu, H. Y. Efficient photocatalytic Suzuki cross-coupling reactions on Au-Pd alloy nanoparticles under visible light irradiation. Green Chem. 2014, 16, 4272–4285.

69

Kang, Y. M.; Najmaei, S.; Liu, Z.; Bao, Y. J.; Wang, Y. M.; Zhu, X.; Halas, N. J.; Nordlander, P.; Ajayan, P. M.; Lou, J. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 2014, 26, 6467–6471.

70

Huang, H.; Zhang, L.; Lv, Z. H.; Long, R.; Zhang, C.; Lin, Y.; Wei, K. C.; Wang, C. M.; Chen, L.; Li, Z. Y. et al. Unraveling surface plasmon decay in core–shell nanostructures toward broad-band light-driven catalytic organic synthesis. J. Am. Chem. Soc. 2016, 138, 6822–6828.

71

Song, S. Y.; Wang, X.; Li, S. L.; Wang, Z.; Zhu, Q.; Zhang, H. J. Pt nanohelices with highly ordered horizontal pore channels as enhanced photothermal materials. Chem. Sci. 2015, 6, 6420–6424.

72

Zeng, J.; Goldfeld, D.; Xia, Y. N. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew. Chem., Int. Ed. 2013, 52, 4169–4173.

73

Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

74

Mao, M. Y.; Li, Y. Z.; Lv, H. Q.; Hou, J. T.; Zeng, M.; Ren, L.; Huang, H.; Zhao, X. J. Efficient UV–vis–IR light-driven thermocatalytic purification of benzene on a Pt/CeO2 nanocomposite significantly promoted by hot electron-induced photoactivation. Environ. Sci. : Nano 2017, 4, 373–384.

75

Nikitenko, S. I.; Chave, T.; Cau, C.; Brau, H. P.; Flaud, V. Photothermal hydrogen production using noble-metal-free Ti@TiO2 core–shell nanoparticles under visible–NIR light irradiation. ACS Catal. 2015, 5, 4790–4795.

76

Zhang, Y. L.; Xiao, Q.; Bao, Y. S.; Zhang, Y. J.; Bottle, S.; Sarina, S.; Zhaorigetu, B.; Zhu, H. Y. Direct photocatalytic conversion of aldehydes to esters using supported gold nanoparticles under visible light irradiation at room temperature. J. Phys. Chem. C 2014, 118, 19062–19069.

77

Zhang, X. G.; Du, A. J.; Zhu, H. Y.; Jia, J. F.; Wang, J.; Ke, X. B. Surface plasmon-enhanced zeolite catalysis under light irradiation and its correlation with molecular polarity of reactants. Chem. Commun. 2014, 50, 13893–13895.

File
nr-11-1-126_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 March 2017
Revised: 29 March 2017
Accepted: 01 April 2017
Published: 04 July 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21631004 and 21601055), International Science & Technology Cooperation Program of China (No. 2014DFR41110), and Fundamental Research Funds for the Central Universities (No. 2572015CB27).

Return