Journal Home > Volume 11 , Issue 1

We report triboelectric nanogenerators (TENGs) composed of a flexible and cost-effective gold-coated conductive textile (CT) to convert wind energy into electricity. The Au-coated CT is employed because of its high surface roughness resulting from Au nanodots distributed on microsized fibers. Thus, the Au-coated CT with nano/microarchitecture plays an important role in enhancing the effective contact area as well as the output performance of the TENG. Moreover, the surface roughness of the Au-coated CT is controlled by adjusting the Au thermal deposition time or tailoring the diameter of the Au nanodots. At an applied wind speed of 10 m·s–1, a wind-based TENG (W-TENG) with dimensions of 75 mm × 12 mm × 25 mm produces an open-circuit voltage (VOC) of ~39 V and a short-circuit current (ISC) of ~3 μA by using the airflow-induced vibrations of an optimized Au-coated CT between two flat polydimethylsiloxane (PDMS) layers. To further specify the device performance, the electric output of the W-TENG is analyzed by varying several parameters such as the distance between the PDMS layer and Au-coated CT, applied wind speed, external load resistance, and surface roughness of the PDMS layers. Introducing an inverse micropyramid architecture on the PDMS layers further improves the output performance of the W-TENG, which exhibits the highest VOC (~49 V) and ISC (~5 μA) values at an applied wind speed of 6.8 m·s-1. Additionally, the reliability of the W-TENG is also tested by measuring its output current during long-term cyclic operation. Furthermore, the rectified output signals observed by the W-TENG device are used as a direct power source to light 45 green commercial light-emitting diodes connected in series and also to charge capacitors (100 and 4.7 μF). Finally, the output performance of the W-TENG device in an actual windy situation is also investigated.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Triboelectric nanogenerators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy

Show Author's information Bhaskar DudemDong Hyun KimJae Su Yu( )
Department of Electronic EngineeringKyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701Republic of Korea

Abstract

We report triboelectric nanogenerators (TENGs) composed of a flexible and cost-effective gold-coated conductive textile (CT) to convert wind energy into electricity. The Au-coated CT is employed because of its high surface roughness resulting from Au nanodots distributed on microsized fibers. Thus, the Au-coated CT with nano/microarchitecture plays an important role in enhancing the effective contact area as well as the output performance of the TENG. Moreover, the surface roughness of the Au-coated CT is controlled by adjusting the Au thermal deposition time or tailoring the diameter of the Au nanodots. At an applied wind speed of 10 m·s–1, a wind-based TENG (W-TENG) with dimensions of 75 mm × 12 mm × 25 mm produces an open-circuit voltage (VOC) of ~39 V and a short-circuit current (ISC) of ~3 μA by using the airflow-induced vibrations of an optimized Au-coated CT between two flat polydimethylsiloxane (PDMS) layers. To further specify the device performance, the electric output of the W-TENG is analyzed by varying several parameters such as the distance between the PDMS layer and Au-coated CT, applied wind speed, external load resistance, and surface roughness of the PDMS layers. Introducing an inverse micropyramid architecture on the PDMS layers further improves the output performance of the W-TENG, which exhibits the highest VOC (~49 V) and ISC (~5 μA) values at an applied wind speed of 6.8 m·s-1. Additionally, the reliability of the W-TENG is also tested by measuring its output current during long-term cyclic operation. Furthermore, the rectified output signals observed by the W-TENG device are used as a direct power source to light 45 green commercial light-emitting diodes connected in series and also to charge capacitors (100 and 4.7 μF). Finally, the output performance of the W-TENG device in an actual windy situation is also investigated.

Keywords: triboelectric nanogenerators, Au-coated conductive textile, polydimethylsiloxane layer, wind energy

References(43)

1

Wu, J. M.; Xu, C.; Zhang, Y.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Flexible and transparent nanogenerators based on a composite of lead-free ZnSnO3 triangular-belts. Adv. Mater. 2012, 24, 6094–6099.

2

Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem., Int. Ed. 2012, 51, 11700–11721.

3

Zhao, Z. F.; Pu, X.; Du, C. H.; Li, L. X.; Jiang, C. Y.; Hu, W. G.; Wang, Z. L. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano 2016, 10, 1780–1787.

4

Li, Y. W.; Meng, L.; Yang, Y.; Xu, G. Y.; Hong, Z. R.; Chen, Q.; You, J. B.; Li, G.; Yang, Y.; Li, Y. F. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 2016, 7, 10214.

5

Dou, L. T.; Liu, Y. S.; Hong, Z. R.; Li, G.; Yang, Y. Low- bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 2015, 115, 12633–12665.

6

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

7

Yang, Y.; Guo, W. X.; Pradel, K. C.; Zhu, G.; Zhou, Y. S.; Zhang, Y.; Hu, Y. F.; Lin, L.; Wang, Z. L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838.

8

Paradiso, J. A.; Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervas. Comput. 2005, 4, 18–27.

9

Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128, 2385–2393.

10

Nabavi, S.; Zhang, L. H. Portable wind energy harvesters for low-power applications: A survey. Sensors 2016, 16, 1101.

11

Seol, M. -L.; Woo, J. -H.; Jeon, S. -B.; Kim, D.; Park, S. -J.; Hur, J.; Choi, Y. -K. Vertically stacked thin triboelectric nanogenerator for wind energy harvesting. Nano Energy 2015, 14, 201–208.

12

Ackermann, T.; Söder, L. Wind energy technology and current status: A review. Renew. Sust. Energ. Rev. 2000, 4, 315–374.

13

Weisser, D.; Garcia, R. S. Instantaneous wind energy penetration in isolated electricity grids: Concepts and review. Renew. Energy 2005, 30, 1299–1308.

14

Chandrasekhar, A.; Alluri, N. R.; Saravanakumar, B.; Selvarajan, S.; Kim, S. -J. Human interactive triboelectric nanogenerator as a self-powered smart seat. ACS Appl. Mater. Interfaces 2016, 8, 9692–9699.

15

Yang, Y.; Zhang, H. L.; Lin, Z. -H.; Zhou, Y. S.; Jing, Q. S.; Su, Y. J.; Yang, J.; Chen, J.; Hu, C. G.; Wang, Z. L. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 2013, 7, 9213–9222.

16

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

17

Guo, H. Y.; Chen, J.; Yeh, M. -H.; Fan, X.; Wen, Z.; Li, Z. L.; Hu, C. G.; Wang, Z. L. An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. ACS Nano 2015, 9, 5577–5584.

18

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

19

Zhang, R.; Lin, L.; Jing, Q. S.; Wu, W. Z.; Zhang, Y.; Jiao, Z. X.; Yan, L.; Han, R. P. S.; Wang, Z. L. Nanogenerator as an active sensor for vortex capture and ambient wind-velocity detection. Energy Environ. Sci. 2012, 5, 8528–8533.

20

Fei, F.; Mai, J. D.; Li, W. J. A wind-flutter energy converter for powering wireless sensors. Sens. Actuators A 2012, 173, 163–171.

21

Guo, H. Y.; He, X. M.; Zhong, J. W.; Zhong, Q. Z.; Leng, Q.; Hu, C. G.; Chen, J.; Tian, L.; Xi, Y.; Zhou, J. A nanogenerator for harvesting airflow energy and light energy. J. Mater. Chem. A 2014, 2, 2079–2087.

22

Kim, D.; Jeon, S. -B.; Kim, J. Y.; Seol, M. -L.; Kim, S. O.; Choi, Y. -K. High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy 2015, 12, 331–338.

23

Bai, P.; Zhu, G.; Zhou, Y. S.; Wang, S. H.; Ma, J. S.; Zhang, G.; Wang, Z. L. Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Res. 2014, 7, 990–997.

24

Fan, F. -R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self- powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

25

Ko, Y. H.; Lee, S. H.; Leem, J. W.; Yu, J. S. High transparency and triboelectric charge generation properties of nano-patterned PDMS. RSC Adv. 2014, 4, 10216–10220.

26

Yu, Y. H.; Wang, X. D. Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mech. Lett. 2016, 9, 514–530.

27

Zhang, X. -S.; Han, M. -D.; Wang, R. -X.; Zhu, F. -Y.; Li, Z. -H.; Wang, W.; Zhang, H. -X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.

28

Dudem, B.; Ko, Y. H.; Leem, J. W.; Lee, S. H.; Yu, J. S. Highly transparent and flexible triboelectric nanogenerators with subwavelength-architectured polydimethylsiloxane by a nanoporous anodic aluminum oxide template. ACS Appl. Mater. Interfaces 2015, 7, 20520–20529.

29

Lee, S.; Lee, Y.; Kim, D.; Yang, Y.; Lin, L.; Lin, Z. -H.; Hwang, W.; Wang, Z. L. Triboelectric nanogenerator for harvesting pendulum oscillation energy. Nano Energy 2013, 2, 1113–1120.

30

Jeong, C. K.; Baek, K. M.; Niu, S. M.; Nam, T. W.; Hur, Y. H.; Park, D. Y.; Hwang, G. -T.; Byun, M.; Wang, Z. L.; Jung, Y. S. et al. Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 2014, 14, 7031–7038.

31

Zhu, G.; Lin, Z. -H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

32

Lin, Z. -H.; Zhu, G.; Zhou, Y. S.; Yang, Y.; Bai, P.; Chen, J.; Wang, Z. L. A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem., Int. Ed. 2013, 52, 5065–5069.

33

Wang, S. H.; Wang, X.; Wang, Z. L.; Yang, Y. Efficient scavenging of solar and wind energies in a smart city. ACS Nano 2016, 10, 5696–5700.

34

Li, W. C.; Mak, C. L.; Kan, C. W.; Hui, C. Y. Enhancing the capacitive performance of a textile-based CNT supercapacitor. RSC Adv. 2014, 4, 64890–64900.

35

Dudem, B.; Heo, J. H.; Leem, J. W.; Yu, J. S.; Im, S. H. CH3NH3PbI3 planar perovskite solar cells with antireflection and self-cleaning function layers. J. Mater. Chem. A 2016, 4, 7573–7579.

36

Lin, Z. -H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L. Harvesting water drop energy by a sequential contact- electrification and electrostatic-induction process. Adv. Mater. 2014, 26, 4690–4696.

37

Park, S. -J.; Seol, M. -L.; Jeon, S. -B.; Kim, D.; Lee, D.; Choi, Y. -K. Surface engineering of triboelectric nanogenerator with an electrodeposited gold nanoflower structure. Sci. Rep. 2015, 5, 13866.

38

Zhu, G.; Bai, P.; Chen, J.; Wang, Z. L. Power-generating shoe insole based on triboelectric nanogenerators for self- powered consumer electronics. Nano Energy 2013, 2, 688–692.

39

Ko, Y. H.; Nagaraju, G.; Lee, S. H.; Yu, J. S. PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays. ACS Appl. Mater. Interfaces 2014, 6, 6631–6637.

40

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

41

Kim, W. -G.; Tcho, I. -W.; Kim, D.; Jeon, S. -B.; Park, S. -J.; Seol, M. -L.; Choi, Y. -K. Performance-enhanced triboelectric nanogenerator using the glass transition of polystyrene. Nano Energy 2016, 27, 306–312.

42

Yong, H.; Chung, J.; Choi, D.; Jung, D.; Cho, M.; Lee, S. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range. Sci. Rep. 2016, 6, 33977.

43

Shin, S. -Y.; Saravanakumar, B.; Ramadoss, A.; Kim, S. J. Fabrication of PDMS-based triboelectric nanogenerator for self-sustained power source application. Int. J. Energy Res. 2016, 40, 288–297.

Video
nr-11-1-101_ESM_Video S1.mp4
File
nr-11-1-101_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 January 2017
Revised: 19 March 2017
Accepted: 31 March 2017
Published: 19 July 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2013R1A2A2A01068407).

Return