Journal Home > Volume 11 , Issue 1

A highly hierarchically ordered macroporous–mesoporous Ce0.4Zr0.6O2 solid solution with crystalline framework walls was directly and simply prepared using polystyrene (PS) microspheres and a block copolymer as dual templates. The PS microspheres and block copolymer were assembled into colloidal crystals and mesoscopic rod-like micelles as macroporous and mesoporous templates, respectively, by a one-step process. This process offers a facile method to prepare hierarchically ordered porous materials. Compared to commercial ceria, the macroporous–mesoporous Ce0.4Zr0.6O2 material significantly improved the ultraviolet resistance and mechanical performance of a polysulfide polymer. Because the ordered macroporous–mesoporous Ce0.4Zr0.6O2 can disperse uniformly in the polysulfide polymer based on the open macroporous structure for diffusion and mobility and mesoporous structure for high surface areas. Furthermore, these results show that better-performing polysulfide polymers can be achieved by adding hierarchically structured materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly ordered macroporous–mesoporous Ce0.4Zr0.6O2 as dual-functional material in a polysulfide polymer

Show Author's information Zhenxing Li1,§( )Jianzheng Zhang2,§Mingming Li1Xiaofei Xing1Qiuyu Zhang2
State Key Laboratory of Heavy Oil ProcessingInstitute of New EnergyChina University of Petroleum (Beijing)Beijing102249China
Department of Applied ChemistryCollege of ScienceNorthwestern Polytechnical UniversityXi'an710072China

§Zhenxing Li and Jianzheng Zhang contributed equally to this work.

Abstract

A highly hierarchically ordered macroporous–mesoporous Ce0.4Zr0.6O2 solid solution with crystalline framework walls was directly and simply prepared using polystyrene (PS) microspheres and a block copolymer as dual templates. The PS microspheres and block copolymer were assembled into colloidal crystals and mesoscopic rod-like micelles as macroporous and mesoporous templates, respectively, by a one-step process. This process offers a facile method to prepare hierarchically ordered porous materials. Compared to commercial ceria, the macroporous–mesoporous Ce0.4Zr0.6O2 material significantly improved the ultraviolet resistance and mechanical performance of a polysulfide polymer. Because the ordered macroporous–mesoporous Ce0.4Zr0.6O2 can disperse uniformly in the polysulfide polymer based on the open macroporous structure for diffusion and mobility and mesoporous structure for high surface areas. Furthermore, these results show that better-performing polysulfide polymers can be achieved by adding hierarchically structured materials.

Keywords: macroporous?mesoporous, crystalline walls, polysulfide polymer, ultraviolet resistance, mechanical performance

References(46)

1

Thomas, R.; Sinturel, C.; Pionteck, J.; Puliyalil, H.; Thomas, S. In-situ cure and cure kinetic analysis of a liquid rubber modified epoxy resin. Ind. Eng. Chem. Res. 2012, 51, 12178– 12191.

2

Soroush, A.; Haghighat, H. R.; Sajadinia, S. H. Thermal and mechanical properties of polysulfide/epoxy copolymer system: The effect of anhydride content. Polym. Adv. Technol. 2014, 25, 184–190.

3

Huang, P.; Zheng, S. X.; Huang, J. Y.; Guo, Q. P.; Zhu, W. Miscibility and mechanical properties of epoxy resin/ polysulfone blends. Polymer 1997, 38, 5565–5571.

4

Matsui, T.; Miwa, Y. Detection of a new crosslinking and properties of liquid polysulfide polymer. J. Appl. Polym. Sci. 1999, 71, 59–66.

DOI
5

Donaldson, I. D.; Grimes, S. M.; Houlson, A. D.; Behn, S. Curing of a polysulfide sealant with sodium birnessite. J. Appl. Polym. Sci. 2000, 77, 1177–1181.

DOI
6

Thomas, R.; Ding, Y. M.; He, Y. L.; Yang, L.; Moldenaers, P.; Yang, W. M.; Czigany, T.; Thomas, S. Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 2008, 49, 278–294.

7

Thomas, R.; Durix, S.; Sinturel, C.; Omonov, T.; Goossens, S.; Groeninckx, G.; Moldenaers, P.; Thomas, S. Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin – Effects of a liquid rubber inclusion. Polymer 2007, 48, 1695–1710.

8

Ratna, D. Phase separation in liquid rubber modified epoxy mixture. Relationship between curing conditions, morphology and ultimate behavior. Polymer 2001, 42, 4209–4218.

9

Kuang, D. B.; Brezesinski, T.; Smarsly, B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. J. Am. Chem. Soc. 2004, 126, 10534– 10535.

10

Wang, Z. Y.; Li, F.; Ergang, N. S.; Stein, A. Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon−carbon nanocomposites. Chem. Mater. 2006, 18, 5543–5553.

11

Deng, Y. H.; Liu, C.; Yu, T.; Liu, F.; Zhang, F. Q.; Wan, Y.; Zhang, L. J.; Wang, C. C.; Tu, B.; Webley, P. A. et al. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chem. Mater. 2007, 19, 3271–3277.

12

Li, Z. X.; Li, M. M. Highly ordered hierarchical macroporous–mesoporous alumina with crystalline walls. Catal. Lett. 2016, 146, 1712–1717.

13

Chai, G. S.; Shin, I. S.; Yu, J. S. Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Adv. Mater. 2004, 16, 2057–2061.

14

Li, Z. X.; Shi, F. B.; Yan, C. H. Controllable assembly of hierarchical macroporous–mesoporous LnFeO3 and their catalytic performance in theCO + NO reaction. Langmuir 2015, 31, 8672−8679.

15

Xu, J. M.; Wang, A. Q.; Wang, X. D.; Su, D. S.; Zhang, T. Synthesis, characterization, and catalytic application of highly ordered mesoporous alumina-carbon nanocomposites. Nano Res. 2011, 4, 50–60.

16

Dacquin, J. P.; Dhainaut, J.; Duprez, D.; Royer, S.; Lee, A. F.; Wilson, K. An efficient route to highly organized, tunable macroporous−mesoporous alumina. J. Am. Chem. Soc. 2009, 131, 12896−12897.

17

Chen, J. C.; Zhang, R. Y.; Han L.; Tu, B.; Zhao, D. Y. One- pot synthesis of thermally stable gold@mesoporous silica core–shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871–879.

18

Blin, J. L.; Léonard, A.; Yuan, Z. Y.; Gigot, L.; Vantomme, A.; Cheetham, A. K.; Su, B. L. Hierarchically mesoporous/ macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angew. Chem., Int. Ed. 2003, 42, 2872–2875.

19

El Kadib, A.; Chimenton, R.; Sachse, A.; Fajula, F.; Galarneau A.; Coq, B. Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis. Angew. Chem., Int. Ed. 2009, 48, 4969–4972.

20

Lu, A. H.; Schüth F. Nanocasting: Aversatile strategy for creating nanostructured porous materials. Adv. Mater. 2006, 18, 1793–1805.

21

Corma, A.; Atienzar, P.; García, H.; Chane-Ching, J. Y. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 2004, 3, 394–397.

22

Ho, C. M.; Yu, J. C.; Kwong, T.; Mak, A. C.; Lai, S. Morphology-controllable synthesis of mesoporous CeO2 nano-and microstructures. Chem. Mater. 2005, 17, 4514–4522.

23

Morris, C. A.; Anderson, M. L.; Stroud, R. M.; Merzbacher, C. I.; Rolison, D. R. Silica sol as a nanoglue: Flexible synthesis of composite aerogels. Science1999, 284, 622–624.

24

Krawiec, P.; Kockrick, E.; Simon, P.; Auffermann, G.; Kaskel, S. Platinum-catalyzed template removal for the in situ synthesis of MCM-41 supported catalysts. Chem. Mater. 2006, 18, 2663–2669.

25

Carreon, M. A.; Guliants, V. V. Ordered meso- and macroporous binary and mixed metal oxides. Eur. J. Inorg. Chem. 2005, 1, 27–43.

26

Blasco, T.; Corma, A.; Navarro, M. T.; Pariente, J. P. Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. J. Catal. 1995, 156, 65–74.

27

Zhang, L.; Papaefthymiou, G. C.; Ying, J. Y. Synthesis and properties of γ-Fe2O3 nanoclusters within mesoporousaluminosilicate matrices. J. Phys. Chem. B 2001, 105, 7414–7423.

28

Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater. 2005, 77, 1–45.

29

Chane-Ching, J. Y.; Cobo, F.; Aubert, D.; Harvey, H. G.; Airiau, M.; Corma, A. A general method for the synthesis of nanostructured large-surface-area materials through the self-assembly of functionalized nanoparticles. Chem. —Eur. J. 2005, 11, 979–987.

30

Kuemmel, M.; Grosso, D.; Boissière, C.; Smarsly, B.; Brezesinski, T.; Albouy, P. A.; Amenitsch, H.; Sanchez, C. Thermally stable nanocrystalline γ-alumina layers with highly ordered 3D mesoporosity. Angew. Chem., Int. Ed. 2005, 44, 4589–4592.

31

Yuan, Q.; Yin, A. X.; Luo, C.; Sun, L. D.; Zhang, Y. W.; Duan, W. T.; Liu, H. C.; Yan, C. H. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability. J. Am. Chem. Soc. 2008, 130, 3465–3472.

32

Xue, C. F.; Tu, B.; Zhao, D. Y. Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly. Nano Res. 2009, 2, 242–253.

33

Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987−6041.

34

Montini, T.; Speghini, A.; De Rogatis, L.; Lorenzut, B.; Bettinelli, M.; Graziani, M.; Fornasiero, P. Identification of the structural phases of CexZr1−xO2 by Eu(Ⅲ) luminescence studies. J. Am. Chem. Soc. 2009, 131, 13155–13160.

35

López, E. F.; Escribano, V. S.; Panizza, M.; Carnasciali, M. M.; Busca, G. Vibrational and electronic spectroscopic properties of zirconia powders. J. Mater. Chem. 2001, 11, 1891–1897.

36

Fornasiero, P.; Balducci, G.; Di Monte, R.; Kašpar, J.; Sergo, V.; Gubitosa, G.; Ferrero, A.; Graziani, M. Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2. J. Catal. 1996, 164, 173–183.

37

Martínez-Arias, A.; Fernández-García, M.; Ballesteros, V.; Salamanca, L. N.; Conesa, J. C.; Otero, C.; Soria, J. Characterization of high surface area Zr-Ce (1: 1) mixed oxide prepared by a microemulsion method. Langmuir 1999, 15, 4796–4802.

38

Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity; Academic Press: London, 1982.

39

Kašpar, J.; Fornasiero, P.; Graziani, M. Use of CeO2-based oxides in the three-way catalysis. Catal. Today 1999, 50, 285–298.

40

Kašpar, J.; Fornasiero, P.; Hickey, N. Automotive catalytic converters: Current status and some perspectives. Catal. Today 2003, 77, 419–449.

41

Li, Z. X.; Li, L. L.; Yuan, Q.; Feng, W.; Xu, J.; Sun, L. D.; Song, W. G.; Yan, C. H. Sustainable and facile route to nearly monodisperse spherical aggregates of CeO2 nanocrystals with ionic liquids and their catalytic activities for CO oxidation. J. Phys. Chem. C 2008, 112, 18405–18411.

42

Marabelli, F.; Wachter, P. Covalent insulator CeO2: Optical reflectivity measurements. Phys. Rev. B 1987, 36, 1238–1243.

43

Petrovsky, V.; Gorman, B. P.; Erson, H. U.; Petrovsky, T. Optical properties of CeO2 films prepared from colloidal suspension. J. Appl. Phys. 2001, 90, 2517–2521.

44

Hernández-Alonso, M. D.; BelénHungría, A.; Martínez- Arias, A. J.; Coronado, J. M.; Carlos Conesa, J.; Soria, J.; Fernández-García, M. Confinement effects in quasi- stoichiometric CeO2 nanoparticles. Phys. Chem. Chem. Phys. 2004, 6, 3524–3529.

45

Tsunekawa, S.; Fukuda, T.; Kasuya, A. Blueshift in ultravioletabsorption spectra of monodisperse CeO2–x nanoparticles. J. Appl. Phys. 2000, 87, 1318–1321.

46

Patsalas, P.; Logothetidis, S.; Sygellou, L.; Kennou, S. Structure-dependent electronic properties of nanocrystalline cerium oxide films. Phys. Rev. B 2003, 68, 035104.

File
nr-11-1-80_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 November 2016
Revised: 27 March 2017
Accepted: 28 March 2017
Published: 02 August 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (No. 21501197) and Foundation of China University of Petroleum (Beijing) (No. 2462015YJRC004).

Return