Journal Home > Volume 10 , Issue 11

There remains a pressing challenge in the fabrication of superior photocatalysts for light-driven water oxidation. Here, we designed and fabricated heterostructured TiO2/Fe2TiO5 hollow microspheres with single-, double-, closed-double-, triple-, and core-shell structures and different Fe/Ti molar ratios using a facile sequential templating approach. The closed-double-shelled TiO2/Fe2TiO5 hollow microspheres with 35% Fe exhibited the highest oxygen evolution reaction rate up to 375 μmol·g-1·h-1 and good stability for 5 h. The high performance can be attributed to the closed-double shell, which had more reactive sites and greater light-harvesting ability, self-supported thin shells with short charge-transfer paths, and a favorable staggered band alignment between the TiO2 and Fe2TiO5.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multi-shelled TiO2/Fe2TiO5 heterostructured hollow microspheres for enhanced solar water oxidation

Show Author's information Muhammad Waqas1,3Yanze Wei1,2Dan Mao1( )Jian Qi1Yu Yang1Bao Wang1( )Dan Wang1( )
State Key Laboratory of Biochemical Engineering CAS Center for Excellence in Nanoscience Institute of Process Engineering Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 China
Department of Physical Chemistry School of Metallurgical and Ecological Engineering University of Science & Technology Beijing, No. 30, Xueyuan Road, Haidian District Beijing 100083 China
University of Chinese Academy of Sciences Chinese Academy of Sciences, No. 19A Yuquanlu Beijing 100049 China

Abstract

There remains a pressing challenge in the fabrication of superior photocatalysts for light-driven water oxidation. Here, we designed and fabricated heterostructured TiO2/Fe2TiO5 hollow microspheres with single-, double-, closed-double-, triple-, and core-shell structures and different Fe/Ti molar ratios using a facile sequential templating approach. The closed-double-shelled TiO2/Fe2TiO5 hollow microspheres with 35% Fe exhibited the highest oxygen evolution reaction rate up to 375 μmol·g-1·h-1 and good stability for 5 h. The high performance can be attributed to the closed-double shell, which had more reactive sites and greater light-harvesting ability, self-supported thin shells with short charge-transfer paths, and a favorable staggered band alignment between the TiO2 and Fe2TiO5.

Keywords: heterostructure, oxidation, titanium oxide, multi-shelled hollow microsphere, pseudo-brookite, photocatalytic water

References(48)

1

Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344.

2

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735.

3

Tüysüz, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47-54.

4

Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141-145.

5

Khaselev, O.; Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 1998, 280, 425-427.

6

Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by Cu ion implantation. Nano Res. 2014, 7, 353-364.

7

Liu, Q.; Wu, F. L.; Cao, F. R.; Chen, L.; Xie, X. J.; Wang, W. C.; Tian, W.; Li, L. A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting. Nano Res. 2015, 8, 3524-3534.

8

Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L.; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.

9

Lee, S.; Lee, K.; Kim, W. D.; Lee, S.; Shin, D. J.; Lee, D. C. Thin amorphous TiO2 shell on CdSe nanocrystal quantum dots enhances photocatalysis of hydrogen evolution from water. J. Phys. Chem. C 2014, 118, 23627-23634.

10

Bates, M. K.; Jia, Q. Y.; Ramaswamy, N.; Allen, R. J.; Mukerjee, S. Composite Ni/NiO-Cr2O3 catalyst for alkaline hydrogen evolution reaction. J. Phys. Chem. C 2015, 119, 5467-5477.

11

Yamada, Y.; Yano, K.; Xu, Q. A.; Fukuzumi, S. Cu/Co3O4 nanoparticles as catalysts for hydrogen evolution from ammonia borane by hydrolysis. J. Phys. Chem. C 2010, 114, 16456-16462.

12

Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787-7812.

13

Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199-1209.

14

Lin, H. F.; Li, Y. Y.; Li, H. Y.; Wang, X. Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano Res. 2017, 10, 1377-1392.

15

Ma, X. Y.; Li, J. Q.; An, C. H.; Feng, J.; Chi, Y. H.; Liu, J. X.; Zhang, J.; Sun, Y. G. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res. 2016, 9, 2284-2293.

16

Ma, S. S. K.; Maeda, K.; Abe, R.; Domen, K. Visible-light-driven nonsacrificial water oxidation over tungsten trioxide powder modified with two different cocatalysts. Energy Environ. Sci. 2012, 5, 8390-8397.

17

Wang, J. R.; Osterloh, F. E. Limiting factors for photochemical charge separation in BiVO4/Co3O4, a highly active photocatalyst for water oxidation in sunlight. J. Mater. Chem. A 2014, 2, 9405-9411.

18

Frame, F. A.; Townsend, T. K.; Chamousis, R. L.; Sabio, E. M.; Dittrich, T.; Browning, N. D.; Osterloh, F. E. Photocatalytic water oxidation with nonsensitized IrO2 nanocrystals under visible and UV light. J. Am. Chem. Soc. 2011, 133, 7264-7267.

19

Zhu, T.; Wu, H. B.; Wang, Y. B.; Xu, R.; Lou, X. W. Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production. Adv. Energy Mater. 2012, 2, 1497-1502.

20

Hamann, T. W. Splitting water with rust: Hematite photoelectrochemistry. Dalton Trans. 2012, 41, 7830-7834.

21

Sivula, K. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J. Phys. Chem. Lett. 2013, 4, 1624-1633.

22

Wang, Y. B.; Wang, Y. S.; Jiang, R. R.; Xu, R. Cobalt phosphate-ZnO composite photocatalysts for oxygen evolution from photocatalytic water oxidation. Ind. Eng. Chem. Res. 2012, 51, 9945-9951.

23

Xie, Y. P.; Liu, G.; Yin, L. C.; Cheng, H. M. Crystal facet- dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J. Mater. Chem. 2012, 22, 6746-6751.

24

Qi, J.; Zhao, K.; Li, G. D.; Gao, Y.; Zhao, H. J.; Yu, R. B.; Tang, Z. Y. Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation. Nanoscale 2014, 6, 4072-4077.

25

Zhu, J. X.; Yin, Z. Y.; Yang, D.; Sun, T.; Yu, H.; Hoster, H. E.; Hng, H. H.; Zhang, H.; Yan, Q. Y. Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ. Sci. 2013, 6, 987-993.

26

Yang, J. X.; Wang, D. G.; Zhou, X.; Li, C. A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution. Chem. —Eur. J. 2013, 19, 1320-1326.

27

Wang, D. A.; Hisatomi, T.; Takata, T.; Pan, C. S.; Katayama, M.; Kubota, J.; Domen, K. Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew. Chem., Int. Ed. 2013, 52, 11252-11256.

28

Deng, J. J.; Lv, X. X.; Liu, J. Y.; Zhang, H.; Nie, K. Q.; Hong, C. H.; Wang, J. O.; Sun, X. H.; Zhong, J.; Lee, S. T. Thin-layer Fe2TiO5 on hematite for efficient solar water oxidation. ACS Nano 2015, 9, 5348-5356.

29

Bassi, P. S.; Chiam, S. Y.; Gurudayal; Barber, J.; Wong, L. H. Hydrothermal grown nanoporous iron based titanate, Fe2TiO5 for light driven water splitting. ACS Appl. Mater. Interfaces 2014, 6, 22490-22495.

30

Dong, Z. H.; Lai, X. Y.; Halpert, J. E.; Yang, N. L.; Yi, L. X.; Zhai, J.; Wang, D.; Tang, Z. Y.; Jiang, L. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 2012, 24, 1046-1049.

31

Dong, Z. H.; Ren, H.; Hessel, C. M.; Wang, J. Y.; Yu, R. B.; Jin, Q.; Yang, M.; Hu, Z. D.; Chen, Y. F.; Tang, Z. Y. et al. Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells. Adv. Mater. 2014, 26, 905-909.

32

Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749-6773.

33

Wang, Y. W.; Yu, L.; Lou, X. W. Synthesis of highly uniform molybdenum-glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 7423-7426.

34

Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F. B.; Du, J. A.; Wang, D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem., Int. Ed. 2011, 50, 2738-2741.

35

Li, Z. M.; Lai, X. Y.; Wang, H.; Mao, D.; Xing, C. J.; Wang, D. General synthesis of homogeneous hollow core-shell ferrite microspheres. J. Phys. Chem. C 2009, 113, 2792-2797.

36

Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 6417-6420.

37

Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632-637.

38

Wang, J. Y.; Tang, H. J.; Ren, H.; Yu, R. B.; Qi, J.; Mao, D.; Zhao, H. J.; Wang, D. PH-regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates. Adv. Sci. 2014, 1, 1400011.

39

Wang, J. Y.; Tang, H. J.; Zhang, L. J.; Ren, H.; Yu, R. B.; Jin, Q.; Qi, J.; Mao, D.; Yang, M.; Wang, Y. et al. Multi- shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat. Energy 2016, 1, 16050.

40

Wang, J. Y.; Tang, H. J.; Wang, H.; Yu, R. B.; Wang, D. Multi-shelled hollow micro-/nanostructures: promising platforms for lithium-ion batteries. Mater. Chem. Front. 2017, 1, 414-430.

41

Li, H.; Ma, H. R.; Yang, M.; Wang, B.; Shao, H.; Wang, L.; Yu, R. B.; Wang, D. Highly controlled synthesis of multi- shelled NiO hollow microspheres for enhanced lithium storage properties. Mater. Res. Bull. 2017, 87, 224-229.

42

Zhang, J.; Ren, H.; Wang, J. Y.; Qi, J.; Yu, R. B.; Wang, D.; Liu, Y. L. Engineering of multi-shelled SnO2 hollow microspheres for highly stable lithium-ion batteries. J. Mater. Chem. A 2016, 4, 17673-17677.

43

Chen, M. J.; Wang, J. Y.; Tang, H. J.; Yang, Y.; Wang, B.; Zhao, H. J.; Wang, D. Synthesis of multi-shelled MnO2 hollow microspheres via an anion-adsorption process of hydrothermal intensification. Inorg. Chem. Front. 2016, 3, 1065-1070.

44

Wang, F.; Wang, J. Y.; Ren, H.; Tang, H. J.; Yu, R. B.; Wang, D. Multi-shelled LiMn2O4 hollow microspheres as superior cathode materials for lithium-ion batteries. Inorg. Chem. Front. 2016, 3, 365-369.

45

Ren, H.; Yu, R. B.; Wang, J. Y.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H. J.; Wang, D. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett. 2014, 14, 6679-6684.

46

Liu, Q. H.; He, J. F.; Yao, T.; Sun, Z. H.; Cheng, W. R.; He, S.; Xie, Y.; Peng, Y. H.; Cheng, H.; Sun, Y. F. et al. Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nat. Commun. 2014, 5, 5122.

47

Fink, Y.; Winn, J. N.; Fan, S. H.; Chen, C. P.; Michel, J.; Joannopoulos, J. D.; Thomas, E. L. A dielectric omnidirectional reflector. Science 1998, 282, 1679-1682.

48

Dotan, H.; Kfir, O.; Sharlin, E.; Blank, O.; Gross, M.; Dumchin, I.; Ankonina, G.; Rothschild, A. Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 2013, 12, 158-164.

File
nr-10-11-3920_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 March 2017
Revised: 26 March 2017
Accepted: 27 March 2017
Published: 08 July 2017
Issue date: November 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This project was kindly supported by the National Science Fund for Distinguished Young Scholars (No. 21325105), National Natural Science Foundation of China (Nos. 21590795, 51572261, 51472244, 51672274, 51661165013, 51372245, and 51672276), National Key Projects for Fundamental Research and Development of China (No. 2016YFB0600903), CAS Interdisciplinary Innovation Team, and Youth Innovation Promotion Association of CAS (No. 2017070). Muhammad Waqas thank the Chinese Academy of Sciences (CAS)-the World Academy of Sciences (TWAS) President's Fellowship Programme and CAS-TWAS Postgraduate Fellowship for providing living allowance.

Return