Journal Home > Volume 10 , Issue 11

Fabrication of lateral heterostructures (LHS) is promising for a wide range of next-generation devices and could sufficiently unlock the potential of two-dimensional materials. Herein, we demonstrate the design of lateral heterostructures based on new building materials, namely 1S-MX2 LHS, using first-principles calculations. 1S-MX2 LHS exhibits excellent stability, demonstrating high feasibility in the experiment. The desired bandgap opening can endure application at room temperature and was confirmed in 1S-MX2 LHS with spin-orbit coupling (SOC). A strain strategy further resulted in efficient bandgap engineering and an intriguing phase transition. We also found that black phosphorus can serve as a competent substrate to support 1S-MX2 LHS with a coveted type-Ⅱ band alignment, allowing versatile functionalized bidirectional heterostructures with built-in device functions. Furthermore, the robust electronic features could be maintained in the 1S-MX2 LHS with larger components. Our findings will not only renew interest in LHS studies by enriching their categories and properties, but also highlight the promise of these lateral heterostructures as appealing materials for future integrated devices.


menu
Abstract
Full text
Outline
About this article

Two-dimensional square transition metal dichalcogenides with lateral heterostructures

Show Author's information Qilong Sun1Ying Dai1( )Na Yin1Lin Yu1Yandong Ma1Wei Wei1Baibiao Huang2
School of Physics Shandong University Jinan 250100 China
State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China

Abstract

Fabrication of lateral heterostructures (LHS) is promising for a wide range of next-generation devices and could sufficiently unlock the potential of two-dimensional materials. Herein, we demonstrate the design of lateral heterostructures based on new building materials, namely 1S-MX2 LHS, using first-principles calculations. 1S-MX2 LHS exhibits excellent stability, demonstrating high feasibility in the experiment. The desired bandgap opening can endure application at room temperature and was confirmed in 1S-MX2 LHS with spin-orbit coupling (SOC). A strain strategy further resulted in efficient bandgap engineering and an intriguing phase transition. We also found that black phosphorus can serve as a competent substrate to support 1S-MX2 LHS with a coveted type-Ⅱ band alignment, allowing versatile functionalized bidirectional heterostructures with built-in device functions. Furthermore, the robust electronic features could be maintained in the 1S-MX2 LHS with larger components. Our findings will not only renew interest in LHS studies by enriching their categories and properties, but also highlight the promise of these lateral heterostructures as appealing materials for future integrated devices.

Keywords: density functional theory, black phosphorus, two-dimensional, transition metal dichalcogenide, lateral heterostructure

References(53)

1

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

3

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

4

Chen, X.; Wu, B.; Liu, Y. Q. Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev. 2016, 45, 2057-2074.

5

Tang, Q.; Zhou, Z.; Chen, Z. F. Graphene-related nanomaterials: Tuning properties by functionalization. Nanoscale 2013, 5, 4541-4583.

6

Jin, C. H.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 2009, 102, 195505.

7

Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932-934.

8

Tang, Q.; Bao, J.; Li, Y. F.; Zhou, Z.; Chen, Z. F. Tuning band gaps of BN nanosheets and nanoribbons via interfacial dihalogen bonding and external electric field. Nanoscale 2014, 6, 8624-8634.

9

Alred, J. M.; Zhang, Z. H.; Hu, Z. L.; Yakobson, B. I. Interface-induced warping in hybrid two-dimensional materials. Nano Res. 2015, 8, 2015-2023.

10

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

11

Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859-8876.

12

Kou, L. Z.; Du, A. J.; Chen, C. F.; Frauenheim, T. Strain engineering of selective chemical adsorption on monolayer MoS2. Nanoscale 2014, 6, 5156-5161.

13

Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two- dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543-1560.

14

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.

15

Xie, M. Q.; Zhang, S. L.; Cai, B.; Huang, Y.; Zou, Y. S.; Guo, B.; Gu, Y.; Zeng, H. B. A promising two-dimensional solar cell donor: Black arsenic-phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14, 000 cm2·V-1·s-1. Nano Energy 2016, 28, 433-439.

16

Sun, Q. L.; Dai, Y.; Ma, Y. D.; Yin, N.; Wei, W.; Yu, L.; Huang, B. B. Design of lateral heterostructure from arsenene and antimonene. 2D Mater. 2016, 3, 035017.

17

Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. H. et al. Two- dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352.

18

Li, X. R.; Dai, Y.; Ma, Y. D.; Wei, W.; Yu, L.; Huang, B. B. Prediction of large-gap quantum spin hall insulator and Rashba-Dresselhaus effect in two-dimensional g-TlA (A = N, P, As, and Sb) monolayer films. Nano Res. 2015, 8, 2954-2962.

19

Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135-6141.

20

Son, Y.; Li, M. Y.; Cheng, C. C.; Wei, K. H.; Liu, P. W.; Wang, Q. H.; Li, L. J.; Strano, M. S. Observation of switchable photoresponse of a monolayer WSe2-MoS2 lateral heterostructure via photocurrent spectral atomic force microscopic imaging. Nano Lett. 2016, 16, 3571-3577.

21

Du, A. J. In silico engineering of graphene-based van der Waals heterostructured nanohybrids for electronics and energy applications. Wires Comput. Mol. Sci. 2016, 6, 551-570.

22

Ma, Z. N.; Hu, Z. P.; Zhao, X. D.; Tang, Q.; Wu, D. H.; Zhou, Z.; Zhang, L. X. Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C 2014, 118, 5593-5599.

23

Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947-950.

24

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-425.

25

Chen, C. C.; Li, Z.; Shi, L.; Cronin, S. B. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res. 2015, 8, 666-672.

26

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.

27

Ma, X. -C.; Dai, Y.; Yu, L.; Huang, B. -B. Energy transfer in plasmonic photocatalytic composites. Light-Sci. Appl. 2016, 5, e16017.

28

Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091-1095.

29

Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524-528.

30

Mahjouri-Samani, M.; Lin, M. W.; Wang, K.; Lupini, A. R.; Lee, J.; Basile, L.; Boulesbaa, A.; Rouleau, C. M.; Puretzky, A. A.; Ivanov, I. N. et al. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat. Commun. 2015, 6, 7749.

31

Yoo, Y.; Degregorio, Z. P.; Johns, J. E. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 14281-14287.

32

Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096-1101.

33

Duesberg, G. S. Heterojunctions in 2D semiconductors: A perfect match. Nat. Mater. 2014, 13, 1075-1076.

34

Kobayashi, Y.; Mori, S.; Maniwa, Y.; Miyata, Y. Bandgap- tunable lateral and vertical heterostructures based on monolayer Mo1-xWxS2 alloys. Nano Res. 2015, 8, 3261-3271.

35

Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024-1030.

36

Shi, Y. M.; Li, H.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015, 44, 2744-2756.

37

Sun, Q.; Sun, C. X.; Du, A. J.; Dou, S. X.; Li, Z. In-plane graphene/boron-nitride heterostructures as an efficient metal-free electrocatalyst for the oxygen reduction reaction. Nanoscale 2016, 8, 14084-14091.

38

Sun, Q. L.; Dai, Y.; Ma, Y. D.; Wei, W.; Huang, B. B. Lateral heterojunctions within monolayer h-BN/graphene: A first-principles study. RSC Adv. 2015, 5, 33037-33043.

39

Ma, Y. D.; Kou, L. Z.; Li, X.; Dai, Y.; Smith, S. C.; Heine, T. Quantum spin Hall effect and topological phase transition in two-dimensional square transition-metal dichalcogenides. Phys. Rev. B 2015, 92, 85427.

40

Terrones, H.; Terrones, M. Electronic and vibrational properties of defective transition metal dichalcogenide Haeckelites: New 2D semi-metallic systems. 2D Mater. 2014, 1, 011003.

41

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

42

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

43

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

44

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

45

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin- zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

46

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.

47

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207-8215.

48

Barnett, R. N.; Landman, U. Born-oppenheimer molecular- dynamics simulations of finite systems: Structure and dynamics of (H2O)2. Phys. Rev. B 1993, 48, 2081-2097.

49

Cai, B.; Xie, M. Q.; Zhang, S. L.; Huang, C. X.; Kan, E. J.; Chen, X. P.; Gu, Y.; Zeng, H. B. A promising two-dimensional channel material: Monolayer antimonide phosphorus. Sci. China Mater. 2016, 59, 648-656.

50

van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554-561.

51

Zhang, S. L.; Yan, Z.; Li, Y. F.; Chen, Z. F.; Zeng, H. B. Atomically thin arsenene and antimonene: Semimetal- semiconductor and indirect-direct band-gap transitions. Angew. Chem., Int. Ed. 2015, 54, 3112-3115.

52

Zhang, S. L.; Xie, M. Q.; Cai, B.; Zhang, H. J.; Ma, Y. D.; Chen, Z. F.; Zhu, Z.; Hu, Z. Y.; Zeng, H. B. Semiconductor- topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain. Phys. Rev. B 2016, 93, 245303.

53

Sun, Q. L.; Dai, Y.; Ma, Y. D.; Wei, W.; Huang, B. B. Vertical and bidirectional heterostructures from graphyne and MSe2 (M = Mo, W). J. Phys. Chem. Lett. 2015, 6, 2694-2701.

Publication history
Copyright
Acknowledgements

Publication history

Received: 17 January 2017
Revised: 10 March 2017
Accepted: 28 March 2017
Published: 27 June 2017
Issue date: November 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work is supported by the National Basic Research Program of China (973 program, No. 2013CB632401), the National Natural Science foundation of China (Nos. 11374190 and 21333006), and the Taishan Scholar Program of Shandong Province, and 111 project B13029. L. Y. thanks the Natural Science Foundation of Shandong Province (No. ZR2013AM021).

Return