Journal Home > Volume 10 , Issue 11

Revealing the structural/electronic features and interfacial interactions of monolayer MoS2 and WS2 on metals is essential to evaluating the performance of related devices. In this study, we focused on the atomic-scale features of monolayer WS2 on Au(001) synthesized via chemical vapor deposition. Scanning tunneling microscopy and spectroscopy reveal that the WS2/Au(001) system exhibits a striped superstructure similar to that of MoS2/Au(001) but weaker interfacial interactions, as evidenced by experimental and theoretical investigations. Specifically, the WS2/Au(001) band gap exhibits a relatively intrinsic value of ~ 2.0 eV. However, the band gap can gradually decrease to ~ 1.5 eV when the sample annealing temperature increases from ~ 370 to 720 ℃. In addition, the doping level (or Fermi energy) of monolayer WS2/Au(001) varies little over the valley and ridge regions of the striped patterns because of the homogenous distributions of point defects introduced by annealing. Briefly, this work provides an in-depth investigation into the interfacial interactions and electronic properties of monolayer MX2 on metal substrates.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Quasi-freestanding, striped WS2 monolayer with an invariable band gap on Au(001)

Show Author's information Min Hong1,2Xiebo Zhou1,2Jianping Shi1,2Yue Qi2Zhepeng Zhang1,2Qiyi Fang1,2Yaguang Guo1Yajuan Sun3Zhongfan Liu2Yuanchang Li4Qian Wang1,5Yanfeng Zhang1,2( )
Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
Center for Nanochemistry (CNC) Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
State Key Laboratory of Coal-based Low-carbon Energy ENN Group Co., Ltd.Langfang 065001 China
National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 China
Center for Applied Physics and Technology Peking University Beijing 100871 China

Abstract

Revealing the structural/electronic features and interfacial interactions of monolayer MoS2 and WS2 on metals is essential to evaluating the performance of related devices. In this study, we focused on the atomic-scale features of monolayer WS2 on Au(001) synthesized via chemical vapor deposition. Scanning tunneling microscopy and spectroscopy reveal that the WS2/Au(001) system exhibits a striped superstructure similar to that of MoS2/Au(001) but weaker interfacial interactions, as evidenced by experimental and theoretical investigations. Specifically, the WS2/Au(001) band gap exhibits a relatively intrinsic value of ~ 2.0 eV. However, the band gap can gradually decrease to ~ 1.5 eV when the sample annealing temperature increases from ~ 370 to 720 ℃. In addition, the doping level (or Fermi energy) of monolayer WS2/Au(001) varies little over the valley and ridge regions of the striped patterns because of the homogenous distributions of point defects introduced by annealing. Briefly, this work provides an in-depth investigation into the interfacial interactions and electronic properties of monolayer MX2 on metal substrates.

Keywords: WS2, interfacial interaction, Au(001), striped superstructure, STM/STS

References(48)

1

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. -J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

2

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

3

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.

4

Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899-907.

5

Zhang, Y.; Chang, T. -R.; Zhou, B.; Cui, Y. -T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111-115.

6

Mak, K. F.; Lee, C. G.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

7

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. -Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.

8

Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664-3670.

9

Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. -J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311-1314.

10

Xiao, D.; Liu, G. -B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

11

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

12

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.

13

Jin, W. C.; Yeh, P. -C.; Zaki, N.; Zhang, D. T.; Sadowski, J. T.; Al-Mahboob, A.; van Der Zande, A. M.; Chenet, D. A.; Dadap, J. I.; Herman, I. P. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2013, 111, 106801.

14

Komsa, H. -P.; Krasheninnikov, A. V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 2012, 86, 241201.

15

Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.

16

Huang, Y. L.; Chen, Y. F.; Zhang, W. J.; Quek, S. Y.; Chen, C. -H.; Li, L. -J.; Hsu, W. -T.; Chang, W. -H.; Zheng, Y. J.; Chen, W. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298.

17

Fuhr, J. D.; Saúl, A.; Sofo, J. O. Scanning tunneling microscopy chemical signature of point defects on the MoS2(0001) surface. Phys. Rev. Lett. 2004, 92, 026802.

18

Zou, X. L.; Liu, Y. Y.; Yakobson, B. I. Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 2013, 13, 253-258.

19

Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. -C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615-2622.

20

Yue, Q.; Chang, S. L.; Qin, S. Q.; Li, J. B. Functionalization of monolayer MoS2 by substitutional doping: A first- principles study. Phys. Lett. A 2013, 377, 1362-1367.

21

Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361-5366.

22

Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F., Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626-3630.

23

Feng, J.; Qian, X. F.; Huang, C. -W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 2012, 6, 866-872.

24

Kang, J.; Li, J. B.; Li, S. -S.; Xia, J. -B.; Wang, L. -W. Electronic structural moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 2013, 13, 5485-5490.

25

Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. -J.; Jin, C. H.; Chou, M. Y.; Shih, C. -K. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/ WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

26

Sørensen, S. G.; Füchtbauer, H. G.; Tuxen, A. K.; Walton, A. S.; Lauritsen, J. V. Structure and electronic properties of in situ synthesized single-layer MoS2 on a gold surface. ACS Nano 2014, 8, 6788-6796.

27

Shi, J. P.; Liu, M. X.; Wen, J. X.; Ren, X. B.; Zhou, X. B.; Ji, Q. Q.; Ma, D. L.; Zhang, Y.; Jin, C. H.; Chen, H. J. et al. All chemical vapor deposition synthesis and intrinsic bandgap observation of MoS2/graphene heterostructures. Adv. Mater. 2015, 27, 7086-7092.

28

Zhou, X. B.; Shi, J. P.; Qi, Y.; Liu, M. X.; Ma, D. L.; Zhang, Y.; Ji, Q. Q.; Zhang, Z. P.; Li, C.; Liu, Z. F. et al. Periodic modulation of the doping level in striped MoS2 superstructures. ACS Nano 2016, 10, 3461-3468.

29

Gao, Y.; Liu, Z. B.; Sun, D. -M.; Huang, L.; Ma, L. -P.; Yin, L. -C.; Ma, T.; Zhang, Z. Y.; Ma, X. -L.; Peng, L. -M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.

30

Yun, S. J.; Chae, S. H.; Kim, H.; Park, J. C.; Park, J. -H.; Han, G. H.; Lee, J. S.; Kim, S. M.; Oh, H. M.; Seok, J. et al. Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano 2015, 9, 5510-5519.

31

Zhang, Y. S.; Shi, J. P.; Han, G. F.; Li, M. J.; Ji, Q. Q.; Ma, D. L.; Zhang, Y.; Li, C.; Lang, X. Y.; Zhang, Y. F. et al. Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Res. 2015, 8, 2881-2890.

32

Cheng, L.; Huang, W. J.; Gong, Q. F.; Liu, C. H.; Liu, Z.; Li, Y. G.; Dai, H. J. Ultrathin WS2 nanoflakes as a high- performance electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7860-7863.

33

Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963-8971.

34

Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447-3454.

35

Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R. T.; Feng, S. M.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M. et al. Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 2013, 7, 5235-5242.

36

Krane, N.; Lotze, C.; Läger, J. M.; Reecht, G.; Franke, K. J. Electronic structure and luminescence of quasi-freestanding MoS2 nanopatches on Au(111). Nano Lett. 2016, 16, 5163-5168.

37

Yankowitz, M.; Xue, J. M.; Cormode, D.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Jacquod, P.; LeRoy, B. J. Emergence of superlattice dirac points in graphene on hexagonal boron nitride. Nat. Phys. 2012, 8, 382-386.

38

Hammer, R.; Sander, A.; Förster, S.; Kiel, M.; Meinel, K.; Widdra, W. Surface reconstruction of Au(001): High-resolution real-space and reciprocal-space inspection. Phys. Rev. B 2014, 90, 035446.

39

Zhou, X. B.; Qi, Y.; Shi, J. P.; Niu, J. J.; Liu, M. X.; Zhang, G. H.; Li, Q. C.; Zhang, Z. P.; Hong, M.; Ji, Q. Q. et al. Modulating the electronic properties of monolayer graphene using a periodic quasi-one-dimensional potential generated by hex-reconstructed Au(001). ACS Nano 2016, 10, 7550- 7557.

40

Gao, Y. B.; Zhang, Y. F.; Chen, P. C.; Li, Y. C.; Liu, M. X.; Gao, T.; Ma, D. L.; Chen, Y. B.; Cheng, Z. H.; Qiu, X. H. et al. Toward single-layer uniform hexagonal boron nitride- graphene patchworks with zigzag linking edges. Nano Lett. 2013, 13, 3439-3443.

41

Liu, M. X.; Li, Y. C.; Chen, P. C.; Sun, J. Y.; Ma, D. L.; Li, Q. C.; Gao, T.; Gao, Y. B.; Cheng, Z. H.; Qiu, X. H. et al. Quasi-freestanding monolayer heterostructure of graphene and hexagonal boron nitride on Ir(111) with a zigzag boundary. Nano Lett. 2014, 14, 6342-6347.

42

Hill, H. M.; Rigosi, A. F.; Rim, K. T.; Flynn, G. W.; Heinz, T. F. Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 2016, 16, 4831- 4837.

43

Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. N.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.

44

Komsa, H. -P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.

45

Perrot, E.; Humbert, A.; Piednoir, A.; Chapon, C.; Henry, C. R. STM and TEM studies of a model catalyst: Pd/MoS2(0001). Surf. Sci. 2000, 445, 407-419.

46

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

47

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

48

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

File
nr-10-11-3875_ESM.pdf (988.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 January 2017
Revised: 11 March 2017
Accepted: 19 March 2017
Published: 07 July 2017
Issue date: November 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

We acknowledge financial support by the National Natural Science Foundation of China (Nos. 51472008 and 51290272), the National Key Research and Development Program of China (No. 2016YFA0200103), the Beijing Municipal Science and Technology Planning Project (No. Z151100003315013), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. KF201601) and the ENN Energy Research Institute.

Return