Journal Home > Volume 10 , Issue 11

In conventional crystalline silicon (Si) homojunction solar cells, a strategy of doping by transporting phosphorus or boron impurities into Si is commonly used to build Ohmic contacts at rear electrodes. However, this technique involves an energy intensive, high temperature (~ 800 ℃) process and toxic doping materials. Black phosphorus (BP) is a two-dimensional, narrow bandgap semiconductor with high carrier mobility that exhibits broad light harvesting properties. Here, we place BP: zinc oxide (ZnO) composite films between Si and aluminum (Al) to improve their contact. Once the BP harvests photons with energies below 1.1 eV from the crystalline Si, the ZnO carrier concentration increases dramatically due to charge injection. This photo-induced doping results in a high carrier concentration in the ZnO film, mimicking the modulated doping technique used in semiconductor heterojunctions. We show that photo-induced carriers dramatically increase the conductivities of the BP-modified ZnO films, thus reducing the contact resistance between Si and Al. A photovoltaic power conversion efficiency of 15.2% is achieved in organic-Si heterojunction solar cells that use a ZnO: BP layer. These findings demonstrate an effective way of improving Si/metal contact via a simple, low temperature process.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Black phosphorus induced photo-doping for high- performance organic-silicon heterojunction photovoltaics

Show Author's information Zhouhui Xia1Pengfei Li1Yuqiang Liu1Tao Song1Qiaoliang Bao2Shuit-Tong Lee1Baoquan Sun1( )
Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
Department of Materials Science and Engineering Monash University ClaytonVictoria 3800 Australia

Abstract

In conventional crystalline silicon (Si) homojunction solar cells, a strategy of doping by transporting phosphorus or boron impurities into Si is commonly used to build Ohmic contacts at rear electrodes. However, this technique involves an energy intensive, high temperature (~ 800 ℃) process and toxic doping materials. Black phosphorus (BP) is a two-dimensional, narrow bandgap semiconductor with high carrier mobility that exhibits broad light harvesting properties. Here, we place BP: zinc oxide (ZnO) composite films between Si and aluminum (Al) to improve their contact. Once the BP harvests photons with energies below 1.1 eV from the crystalline Si, the ZnO carrier concentration increases dramatically due to charge injection. This photo-induced doping results in a high carrier concentration in the ZnO film, mimicking the modulated doping technique used in semiconductor heterojunctions. We show that photo-induced carriers dramatically increase the conductivities of the BP-modified ZnO films, thus reducing the contact resistance between Si and Al. A photovoltaic power conversion efficiency of 15.2% is achieved in organic-Si heterojunction solar cells that use a ZnO: BP layer. These findings demonstrate an effective way of improving Si/metal contact via a simple, low temperature process.

Keywords: black phosphorus, zinc oxide, photovoltaics, light induced dopant

References(32)

1

Song, T.; Lee, S. -T.; Sun, B. Q. Prospects and challenges of organic/group IV nanomaterial solar cells. J. Mater. Chem. 2012, 22, 4216-4232.

2

Sato, K.; Dutta, M.; Fukata, N. Inorganic/organic hybrid solar cells: Optimal carrier transport in vertically aligned silicon nanowire arrays. Nanoscale 2014, 6, 6092-6101.

3

He, J.; Yang, Z. H.; Liu, P. P.; Wu, S. D.; Gao, P. Q.; Wang, M.; Zhou, S. Q.; Li, X. F.; Cao, H. T.; Ye, J. C. Enhanced electro-optical properties of nanocone/nanopillar dual- structured arrays for ultrathin silicon/organic hybrid solar cell applications. Adv. Energy Mater. 2016, 6, 1501793.

4

Yu, P. C.; Tsai, C. Y.; Chang, J. K.; Lai, C. C.; Chen, P. H.; Lai, Y. C.; Tsai, P. T.; Li, M. C.; Pan, H. T.; Huang, Y. Y. et al. 13% Efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS Nano 2013, 7, 10780-10787.

5

Thaning, E. M.; Asplund, M. L. M.; Nyberg, T. A.; Inganäs, O. W.; von Holst, H. Stability of poly(3, 4-ethylene dioxythiophene) materials intended for implants. J. Biomed. Mater. Res. 2010, 93B, 407-415.

6

Tang, F. -C.; Chang, J.; Wu, F. -C.; Cheng, H. -L.; Hsu, S. L. -C.; Chen, J. -S.; Chou, W. -Y. Alignment of poly(3, 4-ethylenedioxythiophene) polymer chains in photovoltaic cells by ultraviolet irradiation. J. Mater. Chem. 2012, 22, 22409-22417.

7

Ohki, T.; Ichikawa, K.; Hossain, J.; Fujii, Y.; Hanajiri, T.; Ishikawa, R.; Ueno, K.; Shirai, H. Effect of substrate bias on mist deposition of conjugated polymer on textured crystalline-Si for efficient c-Si/organic heterojunction solar cells. Phys. Status Solidi (a) 2016, 213, 1922-1925.

8

Thomas, J. P.; Leung, K. T. Mixed co-solvent engineering of PEDOT: PSS to enhance its conductivity and hybrid solar cell properties. J. Mater. Chem. A 2016, 4, 17537-17542.

9

Liu, Q. M.; Ishikawa, R.; Funada, S.; Ohki, T.; Ueno, K.; Shirai, H. Highly efficient solution-processed poly(3, 4- ethylenedio-xythiophene): poly(styrenesulfonate)/crystalline- silicon heterojunction solar cells with improved light-induced stability. Adv. Energy Mater. 2015, 5, 1500744.

10

Mu, X. H.; Yu, X. G.; Xu, D. K.; Shen, X. L.; Xia, Z. H.; He, H.; Zhu, H. Y.; Xie, J. S.; Sun, B. Q.; Yang, D. R. High efficiency organic/silicon hybrid solar cells with doping-free selective emitter structure induced by a WO3 thin interlayer. Nano Energy 2015, 16, 54-61.

11

Li, S. X.; Pei, Z. B.; Zhou, F.; Liu, Y.; Hu, H. B.; Ji, S. L.; Ye, C. H. Flexible Si/PEDOT: PSS hybrid solar cells. Nano Res. 2015, 8, 3141-3149.

12

Ma, X. C.; Dai, Y.; Yu, L.; Huang, B. B. Interface Schottky barrier engineering via strain in metal-semiconductor composites. Nanoscale 2016, 8, 1352-1359.

13

Tersoff, J. Schottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 1984, 52, 465-468.

14

Thiyagu, S.; Hsueh, C. -C.; Liu, C. -T.; Syu, H. -J.; Lin, T. -C.; Lin, C. -F. Hybrid organic-inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface. Nanoscale 2014, 6, 3361-3366.

15

He, J.; Gao, P. Q.; Liao, M. D.; Yang, X.; Ying, Z. Q.; Zhou, S. Q.; Ye, J. C.; Cui, Y. Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression. ACS Nano 2015, 9, 6522-6531.

16

Fossum, J. G.; Burgess, E. L. High-efficiency p+-n-n+ back-surface-field silicon solar cells. Appl. Phys. Lett. 1978, 33, 238-240.

17

Sun, Y. L.; Gao, P. Q.; He, J.; Zhou, S. Q.; Ying, Z. Q.; Yang, X.; Xiang, Y.; Ye, J. C. Rear-sided passivation by SiNx: H dielectric layer for improved Si/PEDOT: PSS hybrid heterojunction solar cells. Nanoscale Res. Lett. 2016, 11, 310.

18

Sheng, J.; Wang, D.; Wu, S. D.; Yang, X.; Ding, L.; Zhu, J. Y.; Fang, J. F.; Gao, P. Q.; Ye, J. C. Ideal rear contact formed via employing a conjugated polymer for Si/PEDOT: PSS hybrid solar cells. RSC Adv. 2016, 6, 16010-16017.

19

Zhang, Y. F.; Cui, W.; Zhu, Y. W.; Zu, F. S.; Liao, L. S.; Lee, S. -T.; Sun, B. Q. High efficiency hybrid PEDOT: PSS/ nanostructured silicon Schottky junction solar cells by doping- free rear contact. Energy Environ. Sci. 2015, 8, 297-302.

20

Lee, S. T.; Hou, X. Y.; Mason, M. G.; Tang, C. W. Energy level alignment at Alq/metal interfaces. Appl. Phys. Lett. 1998, 72, 1593-1595.

21

Fan, X.; Zhang, M. L.; Wang, X. D.; Yang, F. H.; Meng, X. M. Recent progress in organic-inorganic hybrid solar cells. J. Mater. Chem. A 2013, 1, 8694-8709.

22

Liang, Z. Q.; Zhang, Q. F.; Jiang, L.; Cao, G. Z. ZnO cathode buffer layers for inverted polymer solar cells. Energy Environ. Sci. 2015, 8, 3442-3476.

23

Yang, T. B.; Cai, W. Z.; Qin, D. H.; Wang, E. G.; Lan, L. F.; Gong, X.; Peng, J. B.; Cao, Y. Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure. J. Phys. Chem. C 2010, 114, 6849-6853.

24

Sofer, Z.; Bouša, D.; Luxa, J.; Mazanek, V.; Pumera, M. Few-layer black phosphorus nanoparticles. Chem. Commun. 2016, 52, 1563-1566.

25

Feng, Q.; Yan, F. G.; Luo, W. G.; Wang, K. Y. Charge trap memory based on few-layer black phosphorus. Nanoscale 2016, 8, 2686-2692.

26

Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451-9469.

27

Liu, R. Y.; Lee, S. T.; Sun, B. Q. 13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater. 2014, 26, 6007-6012.

28

Oh, J.; Yuan, H. -C.; Branz, H. M. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol. 2012, 7, 743-748.

29

Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887-1892.

30

Jin, Y. Z.; Wang, J. P.; Sun, B. Q.; Blakesley, J. C.; Greenham, N. C. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett. 2008, 8, 1649-1653.

31

Rostan, P.; Rau, U.; Nguyen, V. X.; Kirchartz, T.; Schubert, M. B.; Werner, J. H. Low-temperature a-Si: H/ZnO/Al back contacts for high-efficiency silicon solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 1345-1352.

32

Nagel, H.; Berge, C.; Aberle, A. G. Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors. J. Appl. Phys. 1999, 86, 6218-6221.

File
nr-10-11-3848_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 February 2017
Revised: 17 March 2017
Accepted: 18 March 2017
Published: 07 July 2017
Issue date: November 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) (No. 2012CB932402), National Natural Science Foundation of China (Nos. 91123005 and 61674108), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, the Priority Academic Program Development of Jiangsu Higher Education Institutions and Collaborative Innovation Centre of Suzhou Nano Science and Technology.

Return