Journal Home > Volume 10 , Issue 11

A combined hot-injection and heat-up method was developed to synthesize monodisperse and uniform CoMn2O4 quantum dots (CMO QDs). CMO QDs with average size of 2.0, 3.9, and 5.4 nm were selectively obtained at 80, 90, and 105 ℃, respectively. The CMO QDs supported on carbon nanotubes (CNTs) were employed as catalysts for the oxygen reduction/evolution reaction (ORR/OER) in alkaline solution to investigate their size-performance relationship. The results revealed that the amount of surface-adsorbed oxygen and the band gap energy, which affect the charge transfer in the oxygen electrocatalysis processes, strongly depend on the size of the CMO QDs. The CMO-3.9/CNT hybrid, consisting of CNT-supported CMO QDs of 3.9 nm size, possesses a moderate amount of surface- adsorbed oxygen, a lower band gap energy, and a larger charge carrier concentration, and exhibits the highest electrocatalytic activity among the hybrid materials investigated. Moreover, the CMO-3.9/CNT hybrid displays ORR and OER performances similar to those of the benchmark Pt/C and RuO2 catalysts, respectively, due to the strong carbon-oxide interactions and the high dispersion of CoMn2O4 QDs on the carbon substrate; this reveals the huge potential of the CMO-3.9/CNT hybrid as a bifunctional OER/ORR electrocatalyst. The present results highlight the importance of controlling the size of metal oxide nanodots in the design of active oxygen electrocatalysts based on spinel-type, nonprecious metal oxides.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of size-controlled CoMn2O4 quantum dots supported on carbon nanotubes for electrocatalytic oxygen reduction/evolution

Show Author's information Jiajia Shi1Kaixiang Lei1Weiyi Sun1Fujun Li1Fangyi Cheng1( )Jun Chen1,2
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
State Key Laboratory of Element-Organic Chemistry Collaborative Innovation Center of Chemical Science and Engineering Nankai University Tianjin 300071 China

Abstract

A combined hot-injection and heat-up method was developed to synthesize monodisperse and uniform CoMn2O4 quantum dots (CMO QDs). CMO QDs with average size of 2.0, 3.9, and 5.4 nm were selectively obtained at 80, 90, and 105 ℃, respectively. The CMO QDs supported on carbon nanotubes (CNTs) were employed as catalysts for the oxygen reduction/evolution reaction (ORR/OER) in alkaline solution to investigate their size-performance relationship. The results revealed that the amount of surface-adsorbed oxygen and the band gap energy, which affect the charge transfer in the oxygen electrocatalysis processes, strongly depend on the size of the CMO QDs. The CMO-3.9/CNT hybrid, consisting of CNT-supported CMO QDs of 3.9 nm size, possesses a moderate amount of surface- adsorbed oxygen, a lower band gap energy, and a larger charge carrier concentration, and exhibits the highest electrocatalytic activity among the hybrid materials investigated. Moreover, the CMO-3.9/CNT hybrid displays ORR and OER performances similar to those of the benchmark Pt/C and RuO2 catalysts, respectively, due to the strong carbon-oxide interactions and the high dispersion of CoMn2O4 QDs on the carbon substrate; this reveals the huge potential of the CMO-3.9/CNT hybrid as a bifunctional OER/ORR electrocatalyst. The present results highlight the importance of controlling the size of metal oxide nanodots in the design of active oxygen electrocatalysts based on spinel-type, nonprecious metal oxides.

Keywords: quantum dots, size effect, electrocatalysis, spinel oxide

References(51)

1

Tahir, M.; Mahmood, N.; Zhang, X. X.; Mahmood, T.; Butt, F. K.; Aslam, I.; Tanveer, M.; Idrees, F.; Khalid, S.; Shakir, I. et al. Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res. 2015, 8, 3725-3736.

2

Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800-10805.

3

Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 4, 2172-2192.

4

Toh, R. J.; Eng, A. Y. S.; Sofer, Z.; Sedmidubsky, D.; Pumera, M. Ternary transition metal oxide nanoparticles with spinel structure for the oxygen reduction reaction. ChemElectroChem 2015, 2, 982-987.

5

Peng, S. J.; Li, L. L.; Hu, Y. X.; Srinivasan, M.; Cheng, F. Y.; Chen, J.; Ramakrishna, S. Fabrication of spinel one- dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 2015, 9, 1945-1954.

6

Yang, H. C.; Hu, F.; Zhang, Y. J.; Shi, L. Y.; Wang, Q. B. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts. Nano Res. 2016, 9, 207-213.

7

Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.

8

Zhu, H. Y.; Zhang, S.; Huang, Y. X.; Wu, L. H.; Sun, S. H. Monodisperse MxFe3-xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett. 2013, 13, 2947-2951.

9

Cheng, F. Y.; Shen, J.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79-84.

10

Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546-550.

11

Cheng, F. Y.; Su, Y.; Liang, J.; Tao, Z. L.; Chen, J. MnO2- based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898-905.

12

Zhang, L. L.; Zhang, X. B.; Wang, Z. L.; Xu, J. J.; Xu, D.; Wang, L. M. High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous lithium-oxygen batteries. Chem. Commun. 2012, 48, 7598-7600.

13

Cao, X. C.; Wu, J.; Jin, C.; Tian, J. H.; Strasser, P.; Yang, R. Z. MnCo2O4 anchored on P-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable Li-O2 batteries. ACS Catal. 2015, 5, 4890-4896.

14

Fei, H. L.; Ye, R. Q.; Ye, G. L.; Gong, Y. J.; Peng, Z. W.; Fan, X. J.; Samuel, E. L. G.; Ajayan, P. M.; Tour, J. M. Boron- and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. ACS Nano 2014, 8, 10837-10843.

15

Liu, Z. Q.; Cheng, H.; Li, N.; Ma, T. Y.; Su, Y. Z. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 2016, 28, 3777-3784.

16

Yin, H. J.; Tang, H. J.; Wang, D.; Gao, Y.; Tang, Z. Y. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 2012, 6, 8288-8297.

17

Tompsett, D. A.; Parker, S. C.; Islam, M. S. Rutile (β-)MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance. J. Am. Chem. Soc. 2014, 136, 1418-1426.

18

Tompsett, D. A.; Islam, M. S. Surfaces of rutile MnO2 are electronically conducting, whereas the bulk material is insulating. J. Phys. Chem. C 2014, 118, 25009-25015.

19

Alivisators, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933-937.

20

Lee, K. E.; Kim, J. E.; Maiti, U. N.; Lim, J.; Hwang, J. O.; Shim, J.; Oh, J. J.; Yun, T.; Kim, S. O. Liquid crystal size selection of large-size graphene oxide for size-dependent N-doping and oxygen reduction catalysis. ACS Nano 2014, 8, 9073-9080.

21

Lim, W. P.; Wong, C. T.; Ang, S. L.; Low, H. Y.; Chin, W. S. Phase-selective synthesis of copper sulfide nanocrystals. Chem. Mater. 2006, 18, 6170-6177.

22

Zhai, X. M.; Yang, W.; Li, M. Y.; Lu, G. Q.; Liu, J. P.; Zhang, X. L. Noncovalent hybrid of CoMn2O4 spinel nanocrystals and poly (diallyldimethylammonium chloride) functionalized carbon nanotubes as efficient electrocatalysts for oxygen reduction reaction. Carbon 2013, 65, 277-286.

23

Chowdhury, A. D.; Agnihotri, N.; Sen, P.; De, A. Conducting CoMn2O4-PEDOT nanocomposites as catalyst in oxygen reduction reaction. Electrochim. Acta 2014, 118, 81-87.

24

Ma, L.; Zhou, H.; Xin, S. L.; Xiao, C. H.; Li, F.; Ding, S. J. Characterization of local electrocatalytical activity of nanosheet-structured ZnCo2O4/carbon nanotubes composite for oxygen reduction reaction with scanning electrochemical microscopy. Electrochim. Acta 2015, 178, 767-777.

25

Hu, X. F.; Sun, J. C.; Li, Z. F.; Zhao, Q.; Chen, C. C.; Chen, J. Rechargeable room-temperature Na-CO2 batteries. Angew. Chem., Int. Ed. 2016, 55, 6482-6486.

26

Liang, Y. Y; Wang, H. L; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849-15857.

27

Du, J.; Chen, C. C.; Cheng, F. Y.; Chen, J. Rapid synthesis and efficient electrocatalytic oxygen reduction/evolution reaction of CoMn2O4 nanodots supported on graphene. Inorg. Chem. 2015, 54, 5467-5474.

28

Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891-895.

29

Casula, M. F.; Jun, Y. W.; Zaziski, D. J.; Chan, E. M.; Corrias, A.; Alivisatos, A. P. The concept of delayed nucleation in nanocrystal growth demonstrated for the case of iron oxide nanodisks. J. Am. Chem. Soc. 2006, 128, 1675-1682.

30

Yu, T.; Moon, J.; Park, J.; Park, Y. I.; Na, H. B.; Kim, B. H.; Song, I. C.; Moon, W. K.; Hyeon, T. Various-shaped uniform Mn3O4 nanocrystals synthesized at low temperature in air atmosphere. Chem. Mater. 2009, 21, 2272-2279.

31

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121-124.

32

Kwon, S. G.; Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 2011, 7, 2685-2702.

33

Shevchenko, E. V.; Talapin, D. V.; Schnablegger, H.; Kornowski, A.; Festin, Ö.; Svedlindh, P.; Haase, M.; Weller, H. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: The role of nucleation rate in size control of CoPt3 nanocrystals. J. Am. Chem. Soc. 2003, 125, 9090-9101.

34

Fu, G. T.; Liu, Z. Y.; Zhang, J. F.; Wu, J. Y.; Xu, L.; Sun, D. M.; Zhang, J. B.; Tang, Y. W.; Chen, P. Spinel MnCo2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst. Nano Res. 2016, 9, 2110-2122.

35

Gouadec, G.; Colomban, P. Raman spectroscopy of nanostructures and nanosized materials J. Raman Spectrosc. 2007, 38, 598-603.

36

Rolo, A. G.; Vasilevskiy, M. I. Raman spectroscopy of optical phonons confined in semiconductor quantum dots and nanocrystals. J. Raman Spectrosc. 2007, 38, 618-633.

37

Liang, Y. Y.; Wang, H. L; Zhou, J. G; Li, Y. G; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese- cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517-3523.

38

Feng, J.; Liang, Y. Y.; Wang, H. L.; Li, Y. G.; Zhang, B.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Res. 2012, 5, 718-725.

39

Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem., Int. Ed. 2013, 52, 2474-2477.

40

Fu, Y.; Tian, C. G.; Liu, F. Y.; Wang, L.; Yan, H. J.; Yang, B. An effective poly(p-phenylenevinylene) polymer adhesion route toward three-dimensional nitrogen-doped carbon nanotube/reduced graphene oxide composite for direct electrocatalytic oxygen reduction. Nano Res. 2016, 9, 3364-3376.

41

Lei, K. X.; Han, X. P.; Hu, Y. X; Liu, X.; Cong, L.; Cheng, F. Y.; Chen, J. Chemical etching of manganese oxides for electrocatalytic oxygen reduction reaction. Chem. Commun. 2015, 51, 11599-11602.

42

Huang, D. K.; Luo, Y. P.; Li, S. H.; Zhang, B. Y.; Shen, Y.; Wang, M. K. Active catalysts based on cobalt oxide@cobalt/ N-C nanocomposites for oxygen reduction reaction in alkaline solutions. Nano Res. 2014, 7, 1054-1064.

43

Zhao, A. Q.; Masa, J.; Xia, W.; Maljusch, A.; Willinger, M. G.; Clavel, G.; Xie, K. P.; Schlögl, R.; Schuhmann, W.; Muhler, M. Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting. J. Am. Chem. Soc. 2014, 136, 7551-7554.

44

Liu, Y. S.; Li, J.; Li, W. Z.; Li, Y. M.; Chen, Q. Y.; Zhan, F. Q. Nitrogen-doped graphene aerogel-supported spinel CoMn2O4 nanoparticles as an efficient catalyst for oxygen reduction reaction. J. Power Sources 2015, 299, 492-500.

45

Cao, X. C.; Jin, C.; Lu, F. L.; Yang, Z. R.; Shen, M.; Yang, R. Z. Electrochemical properties of MnCo2O4 spinel bifunctional catalyst for oxygen reduction and evolution reaction. J. Electrochem. Soc. 2014, 161, H296-H300.

46

Guo, W. H.; Ma, X. X.; Zhang, X. L.; Zhang, Y. Q.; Yu, D. L.; He, X. Q. Spinel CoMn2O4 nanoparticles supported on a nitrogen and phosphorus dual doped graphene aerogel as efficient electrocatalysts for the oxygen reduction reaction. RSC Adv. 2016, 6, 96436-96444.

47

Liu, Y. L.; Wang, Y. X.; Xu, X. Y.; Sun, P. C.; Chen, T. H. Facile one-step room-temperature synthesis of Mn-based spinel nanoparticles for electro-catalytic oxygen reduction. RSC Adv. 2014, 4, 4727-4731.

48

Peng, S. J.; Liang, Y. L.; Cheng, F. Y.; Liang, J. Size-controlled chalcopyrite CuInS2 nanocrystals: One-pot synthesis and optical characterization. Sci. China Chem. 2012, 55, 1236-1241.

49

Ganesan, P.; Prabu, M.; Sanetuntikul, J.; Shanmugam, S. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: An efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal. 2015, 5, 3625-3637.

50

Arbi, N.; Ben Assaker, I.; Gannouni, M.; Kriaa, A.; Chtourou, R. Experimental investigation of the effect of Zn/S molar ratios on the physical and electrochemical properties of ZnS thin films. Mater. Sci. Semicond. Process. 2015, 40, 873-878.

51

Yu, X. L.; Du, R. F.; Li, B. Y.; Zhang, Y. H.; Liu, H. J.; Qu, J. H.; An, X. Q. Biomolecule-assisted self-assembly of CdS/MoS2/graphene hollow spheres as high-efficiency photocatalysts for hydrogen evolution without noble metals. Appl. Catal. B: Environ. 2016, 182, 504-512.

File
nr-10-11-3836_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 January 2017
Revised: 24 February 2017
Accepted: 16 March 2017
Published: 01 June 2017
Issue date: November 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2016YFA0202500 and 2016YFB0101201), the National Natural Science Foundation of China (Nos. 21322101 and 21231005) and 111 Project (Nos. B12015 and IRT13R30).

Return