Journal Home > Volume 10 , Issue 12

Li metal chemistry is a promising alternative with a much higher energy density than that of state-of-the-art Li-ion counterparts. However, significant challenges including safety issues and poor cyclability have severely impeded Li metal technology from becoming viable. In recent years, nanotechnologies have become increasingly important in materials design and fabrication for Li metal anodes, contributing to major progress in the field. In this review, we first introduce the main achievements in Li metal battery systems fulfilled by nanotechnologies, particularly regarding Li metal anode design and protection, ultrastrong separator engineering, safety monitoring, and smart functions. Next, we introduce recent studies on nanoscale Li nucleation/deposition. Finally, we discuss possible future research directions. We hope this review delivers an overall picture of the role of nanoscale approaches in the recent progress of Li metal battery technology and inspires more research in the future.


menu
Abstract
Full text
Outline
About this article

Nanoscale perspective: Materials designs and understandings in lithium metal anodes

Show Author's information Dingchang Lin1Yayuan Liu1Allen Pei1Yi Cui1,2( )
Department of Materials Science and EngineeringStanford UniversityStanford, California94305USA
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory2575 Sand Hill Road, Menlo ParkCalifornia94025USA

Abstract

Li metal chemistry is a promising alternative with a much higher energy density than that of state-of-the-art Li-ion counterparts. However, significant challenges including safety issues and poor cyclability have severely impeded Li metal technology from becoming viable. In recent years, nanotechnologies have become increasingly important in materials design and fabrication for Li metal anodes, contributing to major progress in the field. In this review, we first introduce the main achievements in Li metal battery systems fulfilled by nanotechnologies, particularly regarding Li metal anode design and protection, ultrastrong separator engineering, safety monitoring, and smart functions. Next, we introduce recent studies on nanoscale Li nucleation/deposition. Finally, we discuss possible future research directions. We hope this review delivers an overall picture of the role of nanoscale approaches in the recent progress of Li metal battery technology and inspires more research in the future.

Keywords: lithium metal anodes, nanoscale lithium nucleation

References(123)

1

Tarascon, J. -M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

2

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16-22.

3

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. -G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513-537.

4

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.

5

Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. -G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.

6

Qian, J. F.; Adams, B. D.; Zheng, J. M.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S. C.; Hu, J. Z.; Zhang, J. G. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 2016, 26, 7094-7102.

7

Liu, B.; Xu, W.; Yan, P. F.; Sun, X. L.; Bowden, M. E.; Read, J.; Qian, J. F.; Mei, D. H.; Wang, C. M.; Zhang, J. G. Enhanced cycling stability of rechargeable Li-O2 batteries using high-concentration electrolytes. Adv. Funct. Mater. 2016, 26, 605-613.

8

Cao, R. G.; Chen, J. Z.; Han, K. S.; Xu, W.; Mei, D. H.; Bhattacharya, P.; Engelhard, M. H.; Mueller, K. T.; Liu, J.; Zhang, J. -G. Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 3059-3066.

9

Brandt, K. Historical development of secondary lithium batteries. Solid State Ionics 1994, 69, 173-183.

10

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271-4302.

11

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. -M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.

12

Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503-11618.

13

Zhang, R.; Li, N. -W.; Cheng, X. -B.; Yin, Y. -X.; Zhang, Q.; Guo, Y. -G. Advanced micro/nanostructures for lithium metal anodes. Adv. Sci. 2017, 4, 1600445.

14

Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047-2051.

15

Aurbach, D.; Daroux, M. L.; Faguy, P. W.; Yeager, E. Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 1987, 134, 1611-1620.

16

Peled, E.; Golodnitsky, D.; Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144, L208-L210.

17

Aurbach, D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 2000, 89, 206-218.

18

Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. -W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626-632.

19

Lu, Y. Y.; Tu, Z. Y.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961-969.

20

Liu, Q. -C.; Xu, J. -J.; Yuan, S.; Chang, Z. -W.; Xu, D.; Yin, Y. -B.; Li, L.; Zhong, H. -X.; Jiang, Y. -S.; Yan, J. -M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241-5247.

21

Zhang, X. -Q.; Cheng, X. -B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 10, 1605989.

22

Lee, H.; Lee, D. J.; Kim, Y. -J.; Park, J. -K.; Kim, H. -T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 2015, 284, 103-108.

23

Lee, D. J.; Lee, H.; Song, J.; Ryou, M. -H.; Lee, Y. M.; Kim, H. -T.; Park, J. -K. Composite protective layer for Li metal anode in high-performance lithium-oxygen batteries. Electrochem. Commun. 2014, 40, 45-48.

24

Kozen, A. C.; Lin, C. -F.; Pearse, A. J.; Schroeder, M. A.; Han, X. G.; Hu, L. B.; Lee, S. -B.; Rubloff, G. W.; Noked, M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 2015, 9, 5884-5892.

25

Kazyak, E.; Wood, K. N.; Dasgupta, N. P. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem. Mater. 2015, 27, 6457-6462.

26

Ma, G. Q.; Wen, Z. Y.; Wu, M. F.; Shen, C.; Wang, Q. S.; Jin, J.; Wu, X. W. A lithium anode protection guided highly-stable lithium-sulfur battery. Chem. Commun. 2014, 50, 14209-14212.

27

Wu, M. F.; Wen, Z. Y.; Liu, Y.; Wang, X. Y.; Huang, L. Z. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J. Power Sources 2011, 196, 8091-8097.

28

Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853-1858.

29

Wang, L. P.; Wang, Q. J.; Jia, W. S.; Chen, S. L.; Gao, P.; Li, J. Z. Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. J. Power Sources 2017, 342, 175-182.

30

Dudney, N. J. Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte. J. Power Sources 2000, 89, 176-179.

31

Cao, Y. Q.; Meng, X. B.; Elam, J. W. Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. ChemElectroChem 2016, 3, 858-863.

32

Belov, D. G.; Yarmolenko, O. V.; Peng, A.; Efimov, O. N. Lithium surface protection by polyacetylene in situ polymerization. Synth. Metals 2006, 156, 745-751.

33

Choi, S. M.; Kang, I. S.; Sun, Y. -K.; Song, J. -H.; Chung, S. -M.; Kim, D. -W. Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode. J. Power Sources 2013, 244, 363-368.

34

Takehara, Z. -I.; Ogumi, Z.; Uchimoto, Y.; Yasuda, K.; Yoshida, H. Modification of lithium/electrolyte interface by plasma polymerization of 1, 1-difluoroethene. J. Power Sources 1993, 44, 377-383.

35

Jang, I. C.; Ida, S.; Ishihara, T. Surface coating layer on Li metal for increased cycle stability of Li-O2 batteries. J. Electrochem. Soc. 2014, 161, A821-A826.

36

Song, J.; Lee, H.; Choo, M. -J.; Park, J. -K.; Kim, H. -T. Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci. Rep. 2015, 5, 14458.

37

Jin, Z. Q.; Xie, K.; Hong, X. B.; Hu, Z. Q.; Liu, X. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J. Power Sources 2012, 218, 163-167.

38

Lu, Y. Y.; Tikekar, M.; Mohanty, R.; Hendrickson, K.; Ma, L.; Archer, L. A. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 2015, 5, 1402073.

39

Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 2017, 10, 1605531.

40

Kim, J. -H.; Woo, H. -S.; Kim, W. K.; Ryu, K. H.; Kim, D. -W. Improved cycling performance of lithium-oxygen cells by use of a lithium electrode protected with conductive polymer and aluminum fluoride. ACS Appl. Mater. Interfaces 2016, 8, 32300-32306.

41

Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. -M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

42

Cheng, X. -B.; Yan, C.; Chen, X.; Guan, C.; Huang, J. -Q.; Peng, H. -J.; Zhang, R.; Yang, S. -T.; Zhang, Q. Implantable solid electrolyte interphase in lithium-metal batteries. Chem 2017, 2, 258-270.

43

Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. -W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618-623.

44

Yan, K.; Lee, H. -W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016-6022.

45

Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 2017, 29, 1603755.

46

Zheng, G. Y.; Wang, C.; Pei, A.; Lopez, J.; Shi, F. F.; Chen, Z.; Sendek, A. D.; Lee, H. -W.; Lu, Z. D.; Schneider, H. et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 2016, 1, 1247-1255.

47

Liu, W.; Li, W. Y.; Zhuo, D.; Zheng, G. Y.; Lu, Z. D.; Liu, K.; Cui, Y. Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes. ACS Cent. Sci. 2017, 3, 135-140.

48

Yang, C. -P.; Yin, Y. -X.; Zhang, S. -F.; Li, N. -W.; Guo, Y. -G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

49

Lu, L. -L.; Ge, J.; Yang, J. -N.; Chen, S. -M.; Yao, H. B.; Zhou, F.; Yu, S. -H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431-4437.

50

Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932-6939.

51

Neuhold, S.; Schroeder, D. J.; Vaughey, J. T. Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes. J. Power Sources 2012, 206, 295-300.

52

Wang, C.; Wang, D. L.; Dai, C. S. High-rate capability and enhanced cyclability of rechargeable lithium batteries using foam lithium anode. J. Electrochem. Soc. 2008, 155, A390-A394.

53

Lee, H.; Song, J.; Kim, Y. -J.; Park, J. -K.; Kim, H. -T. Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries. Sci. Rep. 2016, 6, 30830.

54

Ji, X. L.; Liu, D. -Y.; Prendiville, D. G.; Zhang, Y. C.; Liu, X. N.; Stucky, G. D. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 2012, 7, 10-20.

55

Cheng, X. -B.; Peng, H. -J.; Huang, J. -Q.; Zhang, R.; Zhao, C. -Z.; Zhang, Q. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries. ACS Nano 2015, 9, 6373-6382.

56

Zhang, R.; Cheng, X. -B.; Zhao, C. -Z.; Peng, H. -J.; Shi, J. -L.; Huang, J. -Q.; Wang, J. F.; Wei, F.; Zhang, Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 2016, 28, 2155-2162.

57

Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356-1365.

58

Xie, K. Y.; Wei, W. F.; Yuan, K.; Lu, W.; Guo, M.; Li, Z. H.; Song, Q.; Liu, X. R.; Wang, J. -G.; Shen, C. Toward dendrite-free lithium deposition via structural and interfacial synergistic effects of 3D graphene@ Ni scaffold. ACS Appl. Mater. Interfaces 2016, 8, 26091-26097.

59

Sun, Y. M.; Zheng, G. Y.; Seh, Z. W.; Liu, N.; Wang, S.; Sun, J.; Lee, H. R.; Cui, Y. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 2016, 1, 287-297.

60

Ryou, M. H.; Lee, Y. M.; Lee, Y.; Winter, M.; Bieker, P. Mechanical surface modification of lithium metal: Towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 2015, 25, 834-841.

61

Park, J.; Jeong, J.; Lee, Y.; Oh, M.; Ryou, M. -H.; Lee, Y. M. Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries. Adv. Mater. Interfaces 2016, 3, 1600140.

62

Kim, J. S.; Yoon, W. Y. Improvement in lithium cycling efficiency by using lithium powder anode. Electrochim. Acta 2004, 50, 531-534.

63

Hong, S. -T.; Kim, J. -S.; Lim, S. -J.; Yoon, W. Y. Surface characterization of emulsified lithium powder electrode. Electrochim. Acta 2004, 50, 535-539.

64

Heine, J.; Krüger, S.; Hartnig, C.; Wietelmann, U.; Winter, M.; Bieker, P. Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv. Energy Mater. 2014, 4, 1300815.

65

Liang, Z.; Zheng, G. Y.; Liu, C.; Liu, N.; Li, W. Y.; Yan, K.; Yao, H. B.; Hsu, P. -C.; Chu, S.; Cui, Y. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015, 15, 2910-2916.

66

Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888-2895.

67

Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Zhou, C. W. A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Res. 2016, 9, 3428-3436.

68

Zhang, D.; Zhou, Y.; Liu, C. H.; Fan, S. S. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery. Nanoscale 2016, 8, 11161-11167.

69

Zhang, D.; Yin, Y. L.; Liu, C. H.; Fan, S. S. Modified secondary lithium metal batteries with the polyaniline-carbon nanotube composite buffer layer. Chem. Commun. 2015, 51, 322-325.

70

Xie, K. Y.; Yuan, K.; Zhang, K.; Shen, C.; Lv, W. B.; Liu, X. R.; Wang, J. -G.; Wei, B. Q. Dual functionalities of carbon nanotube films for dendrite-free and high energy-high power lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 4605-4613.

71

Liang, Z.; Lin, D. C.; Zhao, J.; Lu, Z. D.; Liu, Y. Y.; Liu, C.; Lu, Y. Y.; Wang, H. T.; Yan, K.; Tao, X. Y. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. USA 2016, 113, 2862-2867.

72

Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

73

Liu, S. S.; Yang, J.; Yin, L. C.; Li, Z. M.; Wang, J. L.; Nuli, Y. Lithium-rich Li2.6BMg0.05 alloy as an alternative anode to metallic lithium for rechargeable lithium batteries. Electrochim. Acta 2011, 56, 8900-8905.

74

Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Wei, F.; Zhang, Q. Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. Small 2014, 10, 4257-4263.

75

Wang, C. W.; Gong, Y. H.; Liu, B. Y.; Fu, K.; Yao, Y. G.; Hitz, E.; Li, Y. J.; Dai, J. Q.; Xu, S. M.; Luo, W. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017, 17, 565-571.

76

Luo, W.; Gong, Y. H.; Zhu, Y. Z.; Fu, K. K.; Dai, J. Q.; Lacey, S. D.; Wang, C. W.; Liu, B. Y.; Han, X. G.; Mo, Y. F. et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 2016, 138, 12258-12262.

77
Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rubloff, G. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. , in press, DOI: 10.1038/nmat4821.https://doi.org/10.1038/nmat4821
DOI
78

Yan, K.; Lu, Z. D.; Lee, H. -W.; Xiong, F.; Hsu, P. -C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

79

Kang, H. -K.; Woo, S. -G.; Kim, J. -H.; Yu, J. -S.; Lee, S. -R.; Kim, Y. -J. Few-layer graphene island seeding for dendrite-free Li metal electrodes. ACS Appl. Mater. Interfaces 2016, 8, 26895-26901.

80

Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450-4456.

81

Monroe, C.; Newman, J. Dendrite growth in lithium/polymer systems: A propagation model for liquid electrolytes under galvanostatic conditions. J. Electrochem. Soc. 2003, 150, A1377-A1384.

82

Liu, W.; Lin, D. C.; Pei, A.; Cui, Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 2016, 138, 15443-15450.

83

Kim, J. -H.; Kang, H. -K.; Woo, S. -G.; Jeong, G.; Park, M. -S.; Kim, K. J.; Yu, J. -S.; Yim, T.; Jo, Y. N.; Kim, H. et al. Oriented TiO2 nanotubes as a lithium metal storage medium. J. Electroanalyt. Chem. 2014, 726, 51-54.

84

Han, J. -H.; Khoo, E.; Bai, P.; Bazant, M. Z. Over-limiting current and control of dendritic growth by surface conduction in nanopores. Sci. Rep. 2014, 4, 7056.

85

Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 2016, 9, 3221-3229.

86

Kang, S. J.; Mori, T.; Suk, J.; Kim, D. W.; Kang, Y.; Wilcke, W.; Kim, H. -C. Improved cycle efficiency of lithium metal electrodes in Li-O2 batteries by a two-dimensionally ordered nanoporous separator. J. Mater. Chem. A 2014, 2, 9970-9974.

87

Arora, P.; Zhang, Z. M. Battery separators. Chem. Rev. 2004, 104, 4419-4462.

88

Ryou, M. H.; Lee, D. J.; Lee, J. N.; Lee, Y. M.; Park, J. K.; Choi, J. W. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2012, 2, 645-650.

89

Shi, C.; Dai, J. H.; Shen, X.; Peng, L. Q.; Li, C.; Wang, X.; Zhang, P.; Zhao, J. B. A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries. J. Membrane Sci. 2016, 517, 91-99.

90

Jeon, H.; Jin, S. Y.; Park, W. H.; Lee, H.; Kim, H. -T.; Ryou, M. -H.; Lee, Y. M. Plasma-assisted water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium metal secondary batteries. Electrochim. Acta 2016, 212, 649-656.

91

Kumar, J.; Kichambare, P.; Rai, A. K.; Bhattacharya, R.; Rodrigues, S.; Subramanyam, G. A high performance ceramic-polymer separator for lithium batteries. J. Power Sources 2016, 301, 194-198.

92

Chi, M. M.; Shi, L. Y.; Wang, Z. Y.; Zhu, J. F.; Mao, X. F.; Zhao, Y.; Zhang, M. H.; Sun, L. N.; Yuan, S. Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. Nano Energy 2016, 28, 1-11.

93

Jiang, W.; Liu, Z. H.; Kong, Q. S.; Yao, J. H.; Zhang, C. J.; Han, P. X.; Cui, G. L. A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ionics 2013, 232, 44-48.

94

Lin, D. C.; Zhuo, D.; Liu, Y. Y.; Cui, Y. All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J. Am. Chem. Soc. 2016, 138, 11044-11050.

95

Yu, B. -C.; Park, K.; Jang, J. -H.; Goodenough, J. B. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery. ACS Energy Lett. 2016, 1, 633-637.

96

Chang, C. -H.; Chung, S. -H.; Manthiram, A. Dendrite-free lithium anode via a homogenous Li-ion distribution enabled by a kimwipe paper. Adv. Sustainable Syst. 2017, 1, 1600034.

97

Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

98

Tikekar, M. D.; Archer, L. A.; Koch, D. L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2016, 2, e1600320.

99

Liu, K.; Bai, P.; Bazant, M. Z.; Wang, C. -A.; Li, J. A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA·cm-2 observed in situ in a capillary cell. J. Mater. Chem. A 2017, 5, 4300-4307.

100

Shin, W. -K.; Kannan, A. G.; Kim, D. -W. Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries. ACS Appl. Mater. Interfaces 2015, 7, 23700-23707.

101

Tung, S. -O.; Ho, S.; Yang, M.; Zhang, R. L.; Kotov, N. A. A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 2015, 6, 6152.

102

Hao, X. M.; Zhu, J.; Jiang, X.; Wu, H. T.; Qiao, J. S.; Sun, W.; Wang, Z. H.; Sun, K. N. Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett. 2016, 16, 2981-2987.

103

Monroe, C.; Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 2005, 152, A396-A404.

104

Ferrese, A.; Newman, J. Mechanical deformation of a lithium-metal anode due to a very stiff separator. J. Electrochem. Soc. 2014, 161, A1350-A1359.

105

Wu, H.; Zhuo, D.; Kong, D. S.; Cui, Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun. 2014, 5, 5193.

106

Liu, K.; Zhuo, D.; Lee, H. W.; Liu, W.; Lin, D. C.; Lu, Y. Y.; Cui, Y. Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator. Adv. Mater. 2017, 29, 1603987.

107

Chen, Z.; Hsu, P. -C.; Lopez, J.; Li, Y. Z.; To, J. W. F.; Liu, N.; Wang, C.; Andrews, S. C.; Liu, J.; Cui, Y. et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 2016, 1, 15009.

108

Yim, T.; Park, M. -S.; Woo, S. -G.; Kwon, H. -K.; Yoo, J. -K.; Jung, Y. S.; Kim, K. J.; Yu, J. -S.; Kim, Y. -J. Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness. Nano Lett. 2015, 15, 5059-5067.

109

Liu, K.; Liu, W.; Qiu, Y. C.; Kong, B.; Sun, Y. M.; Chen, Z.; Zhuo, D.; Lin, D. C.; Cui, Y. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 2017, 3, e1601978.

110

Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148, 405-416.

111

Steiger, J. Mechanisms of dendrite growth in lithium metal batteries. Ph. D. Dissertation, Karlsruher Institut für Technologie (KIT), Karlsruhe, 2015.

112

Yoo, S. -H.; Lee, J. -H.; Jung, Y. -K.; Soon, A. Exploring stereographic surface energy maps of cubic metals via an effective pair-potential approach. Phys. Rev. B 2016, 93, 035434.

113

Liu, Z. X.; Bertolini, S.; Balbuena, P. B.; Mukherjee, P. P. Li2S film formation on lithium anode surface of Li-S batteries. ACS App. Mater. Interfaces 2016, 8, 4700-4708.

114

Milchev, A. Electrocrystallization: Fundamentals of Nucleation and Growth; Springer: New York, 2002.

115

Milchev, A.; Irene Montenegro, M. A galvanostatic study of electrochemical nucleation. J. Electroanalyt. Chem. 1992, 333, 93-102.

116

Sano, H.; Sakaebe, H.; Senoh, H.; Matsumoto, H. Effect of current density on morphology of lithium electrodeposited in ionic liquid-based electrolytes. J. Electrochem. Soc. 2014, 161, A1236-A1240.

117

Sagane, F.; Ikeda, K. -I.; Okita, K.; Sano, H.; Sakaebe, H.; Iriyama, Y. Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface. J. Power Sources 2013, 233, 34-42.

118

Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132-1139.

119

Stark, J. K.; Ding, Y.; Kohl, P. A. Nucleation of electrodeposited lithium metal: Dendritic growth and the effect of co-deposited sodium. J. Electrochem. Soc. 2013, 160, D337-D342.

120

Ely, D. R.; García, R. E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J. Electrochem. Soc. 2013, 160, A662-A668.

121

Garay-Tapia, A. M.; Romero, A. H.; Barone, V. Lithium adsorption on graphene: From isolated adatoms to metallic sheets. J. Chem. Theory Comput. 2012, 8, 1064-1071.

122

Fan, X. F.; Zheng, W. T.; Kuo, J. -L.; Singh, D. J. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 7793-7797.

123

Liu, M. J.; Kutana, A.; Liu, Y. Y.; Yakobson, B. I. First-principles studies of Li nucleation on graphene. J. Phys. Chem. Lett. 2014, 5, 1225-1229.

Publication history
Copyright
Acknowledgements

Publication history

Received: 13 February 2017
Revised: 12 March 2017
Accepted: 14 March 2017
Published: 19 May 2017
Issue date: December 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgement

Y. C. acknowledges the support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under the Battery Materials Research Program and Battery500 Consortium.

Return