Journal Home > Volume 10 , Issue 11

Rational design and facet-engineering of nanocrystal is an effective strategy to optimize the catalytic performance of abundant and economic semiconductor-based photocatalysts. In this study, we demonstrate a novel ternary Cu2MoS4 nanotube with the {010} facet exposed, synthesized via a hydrothermal method. Compared with two-dimensional Cu2MoS4 nanosheet with the {001} facet exposed, this one-dimensional nanotube exhibits highly enhanced performance of photodegradation and water splitting. Both theoretical calculations and experimental results suggest that the conduction band minimum (CBM) of the {010} facet crystal shows lower potential than that of the {001} facet. In particular, the up-shifted CBM in Cu2MoS4 nanotube is significantly beneficial for the absorption of dye molecules and reduction of H+ to H2. These results may open a new route for realizing high-efficiency photocatalysts based on Cu2MX4 by facet engineering.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Active {010} facet-exposed Cu2MoS4 nanotube as high-efficiency photocatalyst

Show Author's information Ke Zhang1Yunxiang Lin1Zahir Muhammad1Chuanqiang Wu1Shuang Yang1Qun He1Xusheng Zheng1Shuangming Chen1( )Binghui Ge2( )Li Song1( )
National Synchrotron Radiation Laboratory, CAS Center for Excellence in NanoscienceUniversity of Science and Technology of ChinaHefei230029China
Beijing National Laboratory for Condensed Mater PhysicsInstitute of Physics, Chinese Academy of SciencesBeijing100190China

Abstract

Rational design and facet-engineering of nanocrystal is an effective strategy to optimize the catalytic performance of abundant and economic semiconductor-based photocatalysts. In this study, we demonstrate a novel ternary Cu2MoS4 nanotube with the {010} facet exposed, synthesized via a hydrothermal method. Compared with two-dimensional Cu2MoS4 nanosheet with the {001} facet exposed, this one-dimensional nanotube exhibits highly enhanced performance of photodegradation and water splitting. Both theoretical calculations and experimental results suggest that the conduction band minimum (CBM) of the {010} facet crystal shows lower potential than that of the {001} facet. In particular, the up-shifted CBM in Cu2MoS4 nanotube is significantly beneficial for the absorption of dye molecules and reduction of H+ to H2. These results may open a new route for realizing high-efficiency photocatalysts based on Cu2MX4 by facet engineering.

Keywords: nanotube, facet control, photodegradation, theoretical calculations, watersplitting

References(30)

1

Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837.

2

Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckeman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogenevolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew. Chem., Int. Ed. 2012, 51, 6131–6135.

3

Sim, U.; Yang, T. Y., Moon, J.; An, J.; Hwang, J.; Seo, J. H.; Lee, K. Y.; Kim, J.; Han, S.; Hong, B. H. et al. N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy Environ. Sci. 2013, 6, 3658–3664.

4

Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137.

5

Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.

6

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

7

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

8

Dufour, F.; Pigeot-Remy, S.; Durupthy, O.; Cassaignon, S.; Ruanx, V.; Torelli, S.; Mariey, L.; Maugé, F.; Chaneac, C. Morphological control of TiO2 anatase nanoparticles: What is the good surface property to obtain efficient photocatalysts? Appl. Catal. B: Environ. 2015, 174-175, 350–360.

9

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

10

Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.; Yan, S. C.; Zou, Z. G. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J. Am. Chem. Soc. 2010, 132, 14385–14387.

11

Huang, J. H.; Shang, Q. C.; Huang, Y. Y.; Tang, F. M.; Zhang, Q.; Liu, Q. H.; Jiang, S.; Hu, F. C.; Liu, W.; Luo, Y. et al. Oxyhydroxide nanosheets with highly efficient electron–hole pair separation for hydrogen evolution. Angew. Chem., Int. Ed. 2016, 128, 2177–2181.

12

Dotan, H.; Kfir, O.; Sharlin, E.; Blank, O.; Gross, M.; Dumchin, I.; Ankonina, G.; Rothschild, A. Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 2013, 12, 158–164.

13

Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Piao, J. Y.; Yao, T.; Wu, C. Z.; Hu, S. L.; Wei, S. Q. et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 2012, 3, 1057.

14

Guan, M. L.; Xiao, C.; Zhang, J.; Fan, S. J.; An, R.; Cheng, Q. M.; Xie, J. F.; Zhou, M.; Ye, B. J.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135, 10411–10417.

15

Tran, P. D.; Nguyen, M.; Pramana, S. S.; Bhattacharjee, A.; Chiam, S. Y.; Fize, J.; Field, M. J.; Artero, V.; Wong, L. H.; Loo, J. et al. Copper molybdenum sulfide: A new efficient electrocatalyst for hydrogen production from water. Energy Environ. Sci. 2012, 5, 8912–8916.

16

Yu, D. Y. W.; Lee, R. L.; Yi, R.; Chiam, S. Y.; Tran, P. D. Electrochemical characterization of novel layered Cu2MS4 materials for Li-ion batteries (M=Mo). Electrochim. Acta 2014, 115, 337–343.

17

Chen, B. B.; Ma, D. K.; Ke, Q. P.; Chen, W.; Huang, S. M. Indented Cu2MoS4 nanosheets with enhanced electrocatalytic and photocatalytic activities realized through edge engineering. Phys. Chem. Chem. Phys. 2016, 18, 6713–6721.

18

Liang, H. R.; Guo, L. J. Synthesis, characterization and photocatalytic performances of Cu2MoS4. Int. J. Hydrogen Energy 2010, 35, 7104–7109.

19

Zhang, K.; Chen, W. X.; Lin, Y. X.; Chen, H. P.; Haleem, Y. A.; Wu, C. Q.; Ye, F.; Wang T. X.; Song, L. Self-assembly of ultrathin Cu2MoS4 nanobelts for highly efficient visible light-driven degradation of methyl orange. Nanoscale 2015, 7, 17998–18003.

20

Liu, S. W.; Yu, J. G.; Jaroniec, M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. J. Am. Chem. Soc. 2010, 132, 11914–11916.

21

Bi, Y. P.; Ouyang, S. B.; Umezawa, N.; Cao, J. Y.; Ye, J. H. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 6490–6492.

22

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

23

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

24

Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

25

Zhang, D. F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X. D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. A 2009, 19, 5220–5225.

26

Chen, W. X.; Chen, H. P.; Zhu, H. T.; Gao, Q. Q.; Luo, J.; Wang, Y.; Zhang, S.; Zhang, K.; Wang, C. M.; Xiong, Y. J. et al. Solvothermal synthesis of ternary Cu2MoS4 nanosheets: Structural characterization at the atomic level. Small 2014, 10, 4637–4644.

27

Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, C. F.; Jiang, Y. et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem. 2015, 127, 8846–8851.

28

Liang, Y.; Liu, P.; Li, H. B.; Yang, G. W. ZnMoO4 microand nanostructures synthesized by electrochemistry-assisted laser ablation in liquids and their optical properties. Cryst. Growth Des. 2012, 12, 4487–4493.

29

Liu, S. Q.; Tang, Z. R.; Sun, Y. G.; Colmenares, J. C.; Xu, Y. J. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 2015, 44, 5053–5075.

30

Liu, S. Q.; Han, C.; Tang, Z. R.; Xu, Y. J. Heterostructured semiconductor nanowire arrays for artificial photosynthesis. Mater. Horiz. 2016, 3, 270–282.

File
nr-10-11-3817_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 February 2017
Revised: 12 March 2017
Accepted: 14 March 2017
Published: 01 July 2017
Issue date: November 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work is financially supported by the National Basic Research Program of China (No. 2014CB848900), National Natural Science Foundation of China (Nos. U1532112, 11375198, 11574280, and 11605201), CUSF (Nos. WK2310000053, 6030000031), China Scholarship Council and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University. L. S. acknowledges the recruitment program of global experts, the CAS Hundred Talent Program. We thank the Shanghai Synchrotron Radiation Facility (14W1, SSRF), the Beijing Synchrotron Radiation Facility (1W1B and soft-X-ray endstation, BSRF), the Hefei Synchrotron Radiation Facility (Photoemission, MCD and Catalysis/Surface Science Endstations, NSRL), and the USTC Center for Micro and Nanoscale Research and Fabrication for help in characterizations. The authors also thank Ms. Ying Luo, Dr. Jun Bao, and Dr. Yu Li for useful discussions.

Return