Journal Home > Volume 11 , Issue 1

Serum biomarkers in the form of proteins (e.g. cluster of differentiation-44 (CD44)) have been demonstrated to have high clinical sensitivity and specificity for disease diagnosis and prognosis. Owing to the high sample complexity and low molecular abundance in serum, the detection and profiling of biomarkers rely on efficient extraction by materials and devices, mostly using immunoassays via antibody-antigen recognition. Antibody-free approaches are promising and need to be developed for real-case applications in serum to address the limitations of antibody-based techniques in terms of robustness, expense, and throughput. In this work, we demonstrated a novel approach using hyaluronic acid (HA)-modified materials/devices for the extraction, detection, and profiling of serum biomarkers via ligand-protein interactions. We constructed Fe3O4@SiO2@HA particles with different sizes through layer-by-layer assembly and for the first time applied HA-functionalized particles in the facile extraction and sequence identification of CD44 in serum by mass spectrometry. We also first validated HA-CD44 binding through electrochemical sensing using HA-modified electrodes in both standard solutions and diluted serum samples, achieving a detection limit of ~0.6 ng/mL and a linear response range from 1 ng/mL to 10 μg/mL. Furthermore, we performed profiling of HA-binding serum proteome, providing a new preliminary benchmark for the construction of future databases, and we investigated selected surface chemistries of particles for the capture of proteins in serum. Our work not only resulted in the development of a platform technology for CD44 extraction/detection and HA-binding proteome identification, but also guided the design of ligand affinity-based approaches for antibody-free analysis of serum biomarkers towards diagnostic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Extraction, detection, and profiling of serum biomarkers using designed Fe3O4@SiO2@HA core–shell particles

Show Author's information Chandrababu Rejeeth1,§Xuechao Pang1,§Ru Zhang1Wei Xu1Xuming Sun1Bin Liu1Jiatao Lou1Jingjing Wan2Hongchen Gu1Wei Yan1( )Kun Qian1( )
School of Biomedical EngineeringShanghai Center for System BiomedicineShanghai Chest Hospitaland Med-X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
Department of ChemistryShanghai UniversityShanghai200444China

§Chandrababu Rejeeth and Xuechao Pang contributed equally to this work.

Abstract

Serum biomarkers in the form of proteins (e.g. cluster of differentiation-44 (CD44)) have been demonstrated to have high clinical sensitivity and specificity for disease diagnosis and prognosis. Owing to the high sample complexity and low molecular abundance in serum, the detection and profiling of biomarkers rely on efficient extraction by materials and devices, mostly using immunoassays via antibody-antigen recognition. Antibody-free approaches are promising and need to be developed for real-case applications in serum to address the limitations of antibody-based techniques in terms of robustness, expense, and throughput. In this work, we demonstrated a novel approach using hyaluronic acid (HA)-modified materials/devices for the extraction, detection, and profiling of serum biomarkers via ligand-protein interactions. We constructed Fe3O4@SiO2@HA particles with different sizes through layer-by-layer assembly and for the first time applied HA-functionalized particles in the facile extraction and sequence identification of CD44 in serum by mass spectrometry. We also first validated HA-CD44 binding through electrochemical sensing using HA-modified electrodes in both standard solutions and diluted serum samples, achieving a detection limit of ~0.6 ng/mL and a linear response range from 1 ng/mL to 10 μg/mL. Furthermore, we performed profiling of HA-binding serum proteome, providing a new preliminary benchmark for the construction of future databases, and we investigated selected surface chemistries of particles for the capture of proteins in serum. Our work not only resulted in the development of a platform technology for CD44 extraction/detection and HA-binding proteome identification, but also guided the design of ligand affinity-based approaches for antibody-free analysis of serum biomarkers towards diagnostic applications.

Keywords: mass spectrometry, sensors, ligand-protein interaction, magnetic particles, serum biomarkers, cluster of differentiation-44 (CD44)

References(64)

1

Hanash, S. M.; Pitteri, S. J.; Faca, V. M. Mining the plasma proteome for cancer biomarkers. Nature 2008, 452, 571–579.

2

Kosaka, P. M.; Pini, V.; Ruz, J. J.; da Silva, R. A.; González, M. U.; Ramos, D.; Calleja, M.; Tamayo J. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat. Nanotechnol. 2014, 9, 1047–1053.

3

de Gramont, A.; Watson, S.; Ellis, L. M.; Rodón, J.; Tabernero, J.; de Gramont, A.; Hamilton, S. R. Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat. Rev. Clin. Oncol. 2015, 12, 197–212.

4

Vargas, A. J.; Harris, C. C. Biomarker development in the precision medicine era: Lung cancer as a case study. Nat. Rev. Cancer 2016, 16, 525–537.

5

Wu, L.; Qu, X. G. Cancer biomarker detection: Recent achievements and challenges. Chem. Soc. Rev. 2015, 44, 2963–2997.

6

Shi, T.; Fillmore, T. L.; Sun, X.; Zhao, R.; Schepmoes, A. A.; Hossain, M.; Xie, F.; Wu, S.; Kim, J. S.; Jones, N. et al. Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proc. Natl. Acad. Sci. USA 2012, 109, 15395–15400.

7

Liu, B.; Li, Y. L.; Wan, H.; Wang, L.; Xu, W.; Zhu, S. J.; Liang, Y. Y.; Zhang, B.; Lou, J. T.; Dai, H. J. et al. High performance, multiplexed lung cancer biomarker detection on a plasmonic gold chip. Adv. Funct. Mater. 2016, 26, 7994–8002.

8

Stern, E.; Vacic, A.; Rajan, N. K.; Criscione, J. M.; Park, J.; Ilic, B. R.; Mooney, D. J.; Reed, M. K.; Fahmy, T. M. Label-free biomarker detection from whole blood. Nat. Nanotechnol. 2010, 5, 138–142.

9

Zöller, M. CD44: Can a cancer-initiating cell profit from an abundantly expressed molecule? Nat. Rev. Cancer 2011, 11, 254–267.

10

Jin, L. Q.; Hope, K. J.; Zhai, Q. L.; Smadja-Joffe, F.; Dick, J. E. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat. Med. 2006, 12, 1167–1174.

11

Banerji, S.; Wright, A. J.; Noble, M.; Mahoney, D. J.; Campbell, I. D.; Day, A. J.; Jackson, D. G. Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat. Struct. Mol. Biol. 2007, 14, 234–239.

12

Sun, X. M.; Wan, J. J.; Kun, Q. Designed micro-devices for in-vitro diagnostics. Small Methods, in press, DOI:10.1002/ smtd.201700196.

13

Misra, S.; Hascall, V. C.; De Giovanni, C.; Markwald, R. R.; Ghatak, S. Delivery of CD44 shRNA/nanoparticles within cancer cells: Perturbation of hyaluronan/CD44v6 interactions and reduction in adenoma growth in Apc min/+ mice. J. Biol. Chem. 2009, 284, 12432–12446.

14

Wang, S. J.; Tian, Y.; Tian, W.; Sun, J.; Zhao, S.; Liu, Y.; Wang, C. Y.; Tang, Y. X.; Ma, X. Q.; Teng, Z. G. et al. Selectively sensitizing malignant cells to photothermal therapy using a CD44-targeting heat shock protein 72 depletion nanosystem. ACS Nano 2016, 10, 8578–8590.

15

Wang, Y.; Gu, H. C. Core–shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv. Mater. 2015, 27, 576–585.

16

Wu, J.; Wei, X.; Gan, J. R.; Huang, L.; Shen, T.; Lou, J. T.; Liu, B. H.; Zhang, J. X. J.; Qian, K. Multifunctional magnetic particles for combined circulating tumor cells isolation and cellular metabolism detection. Adv. Funct. Mater. 2016, 26, 4016–4025.

17

Li, Y.; Zhang, X. M.; Deng, C. H. Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chem. Soc. Rev. 2013, 42, 8517–8539.

18

Liu, J.; Qiao, S. Z.; Hu, Q. H.; Lu, G. Q. Magnetic nanocomposites with mesoporous structures: Synthesis and applications. Small 2011, 7, 425–443.

19

Boyjoo, Y.; Wang, M. W.; Pareek, V. K.; Liu, J.; Jaroniec, M. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chem. Soc. Rev. 2016, 45, 6013–6047.

20

Liu, J.; Wickramaratne, N. P.; Qiao, S. Z.; Jaroniec, M. Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 2015, 14, 763–774.

21

Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 2011, 47, 12578–12591.

22

Xu, H.; Cui, L. L.; Tong, N. H.; Gu, H. C. Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. J. Am. Chem. Soc. 2006, 128, 15582–15583.

23

Farr, T. D.; Lai, C. H.; Grünstein, D.; Orts-Gil, G.; Wang, C. C.; Boehm-Sturm, P.; Seeberger, P. H.; Harms, C. Imaging early endothelial inflammation following stroke by core shell silica superparamagnetic glyconanoparticles that target selectin. Nano Lett. 2014, 14, 2130–2134.

24

Ding, H. L.; Zhang, Y. X.; Wang, S.; Xu, J. M.; Xu, S. C.; Li, G. H. Fe3O4@SiO2core/shell nanoparticles: The silica coating regulations with a single core for different core sizes and shell thicknesses. Chem. Mater. 2012, 24, 4572–4580.

25

Kim, S. H.; Bazin, N.; Shaw, J. I.; Yoo, J. H.; Worsley, M. A.; Satcher, J. H.; Sain, J. D.; Kuntz, J. D.; Kucheyev, S. O.; Baumann, T. F. et al. Synthesis of nanostructured/ macroscopic low-density copper foams based on metal- coated polymer core–shell particles. ACS Appl. Mater. Interfaces 2016, 8, 34706–34714.

26

Zhu, S. B.; Ma, L.; Wang, S.; Chen, C. X.; Zhang, W. Q.; Yang, L. L.; Hang, W.; Nolan, J. P.; Wu, L.; Yan, X. M. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano 2014, 8, 10998–11006.

27

Thissen, P.; Peixoto, T.; Longo, R. C.; Peng, W. N.; Schmidt, W. G.; Cho, K.; Chabal, Y. J. Activation of surface hydroxyl groups by modification of H-terminated Si(111) surfaces. J. Am. Chem. Soc. 2012, 134, 8869–8874.

28

Liu, X.; Dai, Q.; Austin, L.; Coutts, J.; Knowles, G.; Zou, J. H.; Chen, H.; Huo, Q. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 2008, 130, 2780–2782.

29

Kralj, S.; Makovec, D. Magnetic assembly of superparamagnetic iron oxide nanoparticle clusters into nanochains and nanobundles. ACS Nano 2015, 9, 9700–9707.

30

Li, W. P.; Liao, P. Y.; Su, C. H.; Yeh, C. S. Formation of oligonucleotide-gated silica shell-coated Fe3O4-Au core–shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform. J. Am. Chem. Soc. 2014, 136, 10062–10075.

31

Hu, M.; Yan, J.; He, Y.; Lu, H. T.; Weng, L. X.; Song, S. P.; Fan, C. H.; Wang, L. H. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano 2010, 4, 488–494.

32

Yu, M. H.; Jambhrunkar, S.; Thorn, P.; Chen, J. Z.; Gu, W. Y.; Yu, C. Z. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44- overexpressing cancer cells. Nanoscale 2013, 5, 178–183.

33

Djung, H. S.; Kong, W. H.; Sung, D. K.; Lee, M. Y.; Beack, S. E.; Keum, D. H.; Kim, K. S.; Yun, S. H.; Hahn, S. K. Nanographene oxide–hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano 2014, 8, 260–268.

34

Shao, M. F.; Ning, F. Y.; Zhao, J. W.; Wei, M.; Evans, D. G.; Duan, X. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J. Am. Chem. Soc. 2012, 134, 1071–1077.

35

Skelton, T. P.; Zeng, C. X.; Nocks, A.; Stamenkovic, I. Glycosylation provides both stimulatory and inhibitory effects on cell surface and soluble CD44 binding to hyaluronan. J. Cell Biol. 1998, 140, 431–446.

36

Wang, Y.; Qian, K.; Guo, K.; Kong, J. L.; Marty, J. L.; Yu, C. Z.; Liu, B. H. Electrochemistry and biosensing activity of cytochrome c immobilized in macroporous materials. Microchim. Acta 2011, 175, 87–95.

37

Guo, K.; Qian, K.; Zhang, S.; Kong, J. L.; Yu, C. Z.; Liu, B. H. Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes. Talanta 2011, 85, 1174–1179.

38

Zhang, S.; Hu, R.; Hu, P.; Wu, Z. S.; Shen, G. L.; Yu, R. Q. Blank peak current-suppressed electrochemical aptameric sensing platform for highly sensitive signal-on detection of small molecule. Nucleic Acids Res. 2010, 38, e185.

39

Luo, J.; Ma, Q.; Wei, W.; Zhu, Y.; Liu, R.; Liu, X. Y. Synthesis of water-dispersible molecularly imprinted electroactive nanoparticles for the sensitive and selective paracetamol detection. ACS Appl. Mater. Interfaces 2016, 8, 21028–21038.

40

Knezevic, J.; Langer, A.; Hampel, P. A.; Kaiser, W.; Strasser, R.; Rant, U. Quantitation of affinity, avidity, and binding kinetics of protein analytes with a dynamically switchable biosurface. J. Am. Chem. Soc. 2012, 134, 15225– 15228.

41

Rich, R. L.; Hoth, L. R.; Geoghegan, K. F.; Brown, T. A.; LeMotte, P. K.; Simons, S. P.; Hensley, P.; Myszka, D. G. Kinetic analysis of estrogen receptor/ligand interactions. Proc. Natl. Acad. Sci. USA 2002, 99, 8562–8567.

42

Qian, K.; Zhou, L.; Liu, J.; Yang, J.; Xu, H. Y.; Yu, M. H.; Nouwens, A.; Zou, J.; Monteiro, M. J.; Yu, C. Z. Laser engineered graphene paper for mass spectrometry imaging. Sci. Rep. 2013, 3, 1415.

43

Gan, J. R.; Wei, X.; Li, Y. X.; Wu, J.; Qian, K.; Liu, B. H. Designer SiO2@Au nanoshells towards sensitive and selective detection of small molecules in laser desorption ionization mass spectrometry. Nanomedicine NBM 2015, 11, 1715–1723.

44

Liu, T. T.; Qu, L. L.; Qian, K.; Liu, J.; Zhang, Q.; Liu, L. H.; Liu, S. M. Raspberry-like hollow carbon nanospheres with enhanced matrix-free peptide detection profiles. Chem. Commun. 2016, 52, 1709–1712.

45

Wei, X.; Liu, Z. H.; Jin, X. L.; Huang, L.; Gurav, D. D.; Sun, X. M.; Liu, B. H.; Ye, J.; Qian, K. Plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry for detection of serum metabolites. Anal. Chim. Acta 2017, 950, 147–155.

46

Wu, Y. J.; La Pierre, D. P.; Wu, J.; Yee, A. J.; Yang, B. B. The interaction of versican with its binding partners. Cell Res. 2005, 15, 483–494.

47

Matsumoto, K.; Shionyu, M.; Go, M.; Shimizu, K.; Shinomura, T.; Kimata, K.; Watanabe, H. Distinct interaction of versican/PG-M with hyaluronan and link protein. J. Biol. Chem. 2003, 278, 41205–41212.

48

Glatt, D. M.; Beckford Vera, D. R.; Parrott, M. C.; Luft, J. C.; Benhabbour, S. R.; Mumper, R. J. The interplay of antigen affinity, internalization, and pharmacokinetics on CD44-positive tumor targeting of monoclonal antibodies. Mol. Pharmaceutics 2016, 13, 1894–1903.

49

Zhang, D.; Jia, H.; Wang, Y.; Li, W. M.; Hou, Y. C.; Yin, S. W.; Wang, T. D.; He, S. X.; Lu, S. Y. A CD44 specific peptide developed by phage display for targeting gastric cancer. Biotechnol. Lett. 2015, 37, 2311–2320.

50

Lei, C.; Qian, K.; Noonan, O.; Nouwens, A.; Yu, C. Z. Applications of nanomaterials in mass spectrometry analysis. Nanoscale 2013, 5, 12033–12042.

51

Li, Y. X.; Yan, L.; Liu, Y.; Qian, K.; Liu, B.; Yang, P. Y.; Liu, B. H. High-efficiency nano/micro-reactors for protein analysis. RSC Adv. 2015, 5, 1331–1342.

52

Qian, K.; Wan, J. J.; Qiao, L.; Huang, X. D.; Tang, J. W.; Wang, Y. H.; Kong, J. L.; Yang, P. Y.; Yu, C. Z.; Liu, B. H. Macroporous materials as novel catalysts for efficient and controllable proteolysis. Anal. Chem. 2009, 81, 5749–5756.

53

Gan, J. R.; Qian, K.; Wan, J. J.; Qiao, L.; Guo, W. C.; Yang, P. Y.; Girault, H. H.; Liu, B. H. Amino-functionalized macroporous silica for efficient tryptic digestion in acidic solutions. Proteomics 2013, 13, 3117–3123.

54

Qian, K.; Zhou, L.; Zhang, J.; Lei, C.; Yu, C. Z. A combo-pore approach for the programmable extraction of peptides/proteins. Nanoscale 2014, 6, 5121–5125.

55

Qian, K.; Liu, F.; Yang, J.; Huang, X. D.; Gu, W. Y.; Jambhrunkar, S.; Yuan, P.; Yu, C. Z. Pore size-optimized periodic mesoporous organosilicas for the enrichment of peptides and polymers. RSC Adv. 2013, 3, 14466–14472.

56

Wan, J. J.; Qian, K.; Zhang, J.; Liu, F.; Wang, Y. H.; Yang, P. Y.; Liu, B. H.; Yu, C. Z. Functionalized periodic mesoporous organosilicas for enhanced and selective peptide enrichment. Langmuir 2010, 26, 7444–7450.

57

Hu, Y. F.; Qian, K.; Yuan, P.; Wang, Y. H.; Yu, C. Z. Synthesis of large-pore periodic mesoporous organosilica. Mater. Lett. 2011, 65, 21–23.

58

Qian, K.; Gu, W. Y.; Yuan, P.; Liu, F.; Wang, Y. H.; Monteiro, M.; Yu, C. Z. Enrichment and detection of peptides from biological systems using designed periodic mesoporous organosilica microspheres. Small 2012, 8, 231–236.

59

Qian, K.; Wan, J. J.; Liu, F.; Girault, H. H.; Liu, B. H.; Yu, C. Z. A phospho-directed macroporous alumina-silica nanoreactor with multi-functions. ACS Nano 2009, 3, 3656–3662.

60

Qian, K.; Wan, J. J.; Huang, X. D.; Yang, P. Y.; Liu, B. H.; Yu, C. Z. A smart glycol-directed nanodevice from rationally designed macroporous materials. Chem. —Eur. J. 2010, 16, 822–828.

61

Wan, J. J.; Qian, K.; Qiao, L.; Wang, Y. H.; Kong, J. L.; Yang, P. Y.; Liu, B. H.; Yu, C. Z. TiO2-modified macroporous silica foams for advanced enrichment of multi-phosphorylated peptides. Chem. —Eur. J. 2009, 15, 2504–2508.

62

Huang, L.; Wan, J.J.; Wei, X.; Liu, Y.; Huang, J. J.; Sun, X. M.; Zhang, R.; Gurav, D. D.; Vedarethinam, V.; Li, Y.; Chen, R. P.; Qian, K. Plasmonic silver nanoshells for drug and metabolite detection. Nat. Commun. , in press, DOI: 10.1038/s41467-017-00220-4.

63

Yang, Y. J.; Qi, Y.; Zhu, M.; Zhao, N. N.; Xu, F. J. Facile synthesis of wormlike quantum dots-encapsulated nanoparticles and their controlled surface functionalization for effective bioapplications. Nano Res. 2016, 9, 2531–2543.

64

Liang, S.; Liu, Y.; Jin, X.; Liu, G.; Wen, J.; Zhang, L. L.; Li, J.; Yuan, X. B.; Chen, I. S. Y.; Chen, W.; Wang, H.; Shi, L. Q.; Zhu, X. Y.; Lu, Y. F. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Res. 2016, 9, 1022–1031.

File
nr-11-1-68_ESM.pdf (7.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 December 2016
Revised: 06 March 2017
Accepted: 09 March 2017
Published: 05 August 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

We gratefully thank the financial support from National Natural Science Foundation of China (NSFC)(Nos. 81550110257 and 81401542), Shanghai Science and Technology Commission(No. 16441909300). This work is also sponsored by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. TP2015015).

Return