Journal Home > Volume 10 , Issue 11

Developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important, owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles. Here, we deposited chemically inert and ionically conductive LiAlO2 interfacial layers on LiCoO2 electrodes using the atomic layer deposition technique. During prolonged cycling at high-voltage, the LiAlO2 coating not only prevented interfacial reactions between the LiCoO2 electrode and electrolyte, as confirmed by electrochemical impedance spectroscopy and Raman characterizations, but also allowed lithium ions to freely diffuse into LiCoO2 without sacrificing the power density. As a result, a capacity value close to 200 mA·h·g–1 was achieved for the LiCoO2 electrodes with commercial level loading densities, cycled at the cut-off potential of 4.6 V vs. Li+/Li for 50 stable cycles; this represents a 40% capacity gain, compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs. Li+/Li.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries

Show Author's information Jin Xie1Jie Zhao1Yayuan Liu1Haotian Wang2Chong Liu1Tong Wu1Po-Chun Hsu1Dingchang Lin1Yang Jin1Yi Cui1,3( )
Department of Materials Science and EngineeringStanford UniversityStanford, CA94305USA
Department of Applied PhysicsStanford UniversityStanford, CA94305USA
Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo Park, CA94025USA

Abstract

Developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important, owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles. Here, we deposited chemically inert and ionically conductive LiAlO2 interfacial layers on LiCoO2 electrodes using the atomic layer deposition technique. During prolonged cycling at high-voltage, the LiAlO2 coating not only prevented interfacial reactions between the LiCoO2 electrode and electrolyte, as confirmed by electrochemical impedance spectroscopy and Raman characterizations, but also allowed lithium ions to freely diffuse into LiCoO2 without sacrificing the power density. As a result, a capacity value close to 200 mA·h·g–1 was achieved for the LiCoO2 electrodes with commercial level loading densities, cycled at the cut-off potential of 4.6 V vs. Li+/Li for 50 stable cycles; this represents a 40% capacity gain, compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs. Li+/Li.

Keywords: atomic layer deposition, Lithium ion batteries, lithium cobalt oxide

References(34)

1

Johnson, B. A.; White, R. E. Characterization of commercially available lithium-ion batteries. J. Power Sources 1998, 70, 48–54.

2

Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763.

DOI
3

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

4

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

5

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

6

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.

7

Cho, J.; Kim, Y. J.; Park, B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 2000, 12, 3788–3791.

8

Chen, Z. H.; Dahn, J. R. Studies of LiCoO2 coated with metal oxides. Electrochem. Solid-State Lett. 2003, 6, A221–A224.

9

Chen, Z. H.; Dahn, J. R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta 2004, 49, 1079–1090.

10

Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H. Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition. J. Electrochem. Soc. 2010, 157, A75–A81.

11

Scott, I. D.; Jung, Y. S.; Cavanagh, A. S.; An, Y. F.; Dillon, A. C.; George, S. M.; Lee, S. H. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett. 2011, 11, 414–418.

12

Cho, J.; Kim, Y. J.; Kim, T. J.; Park, B. Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew. Chem., Int. Ed. 2001, 40, 3367–3369.

DOI
13

Cho, J.; Kim, Y. J.; Park, B. LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase. J. Electrochem. Soc. 2001, 148, A1110–A1115.

14

Park, J. S.; Mane, A. U.; Elam, J. W.; Croy, J. R. Amorphous metal fluoride passivation coatings prepared by atomic layer deposition on LiCoO2 for Li-ion batteries. Chem. Mater. 2015, 27, 1917–1920.

15

Jung, Y. S.; Lu, P.; Cavanagh, A. S.; Ban, C. M.; Kim, G. H.; Lee, S. H.; George, S. M.; Harris, S. J.; Dillon, A. C. Unexpected improved performance of ALD coated LiCoO2/graphite Li-ion batteries. Adv. Energy Mater. 2013, 3, 213–219.

16

Cao, H.; Xia, B. J.; Zhang, Y.; Xu, N. X. LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics 2005, 176, 911–914.

17

Park, J. S.; Meng, X. B.; Elam, J. W.; Hao, S. Q.; Wolverton, C.; Kim, C.; Cabana, J. Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries. Chem. Mater. 2014, 26, 3128–3134.

18

Liu, J.; Banis, M. N.; Li, X. F.; Lushington, A.; Cai, M.; Li, R. Y.; Sham, T. K.; Sun, X. L. Atomic layer deposition of lithium tantalate solid-state electrolytes. J. Phys. Chem. C 2013, 117, 20260–20267.

19

Mäntymäki, M.; Hämäläinen, J.; Puukilainen, E.; Sajavaara, T.; Ritala, M.; Leskela, M. Atomic layer deposition of LiF thin films from Lithd, Mg(thd)2, and TiF4 precursors. Chem. Mater. 2013, 25, 1656–1663.

20

Kozen, A. C.; Pearse, A. J.; Lin, C. F.; Noked, M.; Rubloff, G. W. Atomic layer deposition of the solid electrolyte LiPON. Chem. Mater. 2015, 27, 5324–5331.

21

Glass, A. M.; Nassau, K. Lithium ion conduction in rapidly quenched Li2O-Al2O3, Li2O-Ga2O3, and Li2O-Bi2O3 glasses. J. Appl. Phys. 1980, 51, 3756–3761.

22

Aaltonen, T.; Nilsen, O.; Magrasó, A.; Fjellvåg, H. Atomic layer deposition of Li2O-Al2O3 thin films. Chem. Mater. 2011, 23, 4669–4675.

23

Hu, Y.; Ruud, A.; Miikkulainen, V.; Norby, T.; Nilsen, O.; Fjellvag, H. Electrical characterization of amorphous LiAlO2 thin films deposited by atomic layer deposition. RSC Adv. 2016, 6, 60479–60486.

24

George, S. M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131.

25

Wang, H. F.; Jang, Y. I.; Huang, B. Y.; Sadoway, D. R.; Chiang, Y. M. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 1999, 146, 473–480.

26

Levi, M. D.; Salitra, G.; Markovsky, B.; Teller, H.; Aurbach, D.; Heider, U.; Heider, L. Solid-state electrochemical kinetics of Li-ion intercalation into Li1–xCoO2: Simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J. Electrochem. Soc. 1999, 146, 1279–1289.

27

Ho, C.; Raistrick, I. D.; Huggins, R. A. Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J. Electrochem. Soc. 1980, 127, 343–350.

28

Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B. AC impedance of the Li(1–x)CoO2 electrode. Solid State Ion. 1986, 18–19, 794–798.

29

Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B. AC impedance analysis of polycrystalline insertion electrodes: Application to Li1–xCoO2. J. Electrochem. Soc. 1985, 132, 1521–1528.

30

Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ion. 1996, 83, 167–173.

31

Baddour-Hadjean, R.; Pereira-Ramos, J. P. Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem. Rev. 2010, 110, 1278–1319.

32

Hadjiev, V. G.; Iliev, M. N.; Vergilov, I. V. The Raman spectra of Co3O4. J. Phys. C: Solid State Phys. 1988, 21, L199–L201.

33

Park, Y.; Kim, N. H.; Kim, J. M.; Kim, Y. C.; Jeong, Y. U.; Lee, S. M.; Choi, H. C.; Jung, Y. M. Surface reaction of LiCoO2/Li system under high-voltage conditions by X-ray spectroscopy and two-dimensional correlation spectroscopy (2D-COS). Appl. Spectrosc. 2011, 65, 320–325.

34

Park, Y.; Kim, N. H.; Kim, J. Y.; Eom, I. Y.; Jeong, Y. U.; Kim, M. S.; Lee, S. M.; Choi, H. C.; Jung, Y. M. Surface characterization of the high voltage LiCoO2/Li cell by X-ray photoelectron spectroscopy and 2D correlation analysis. Vib. Spectrosc. 2010, 53, 60–63.

File
nr-10-11-3754_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 January 2017
Revised: 07 March 2017
Accepted: 12 March 2017
Published: 25 July 2017
Issue date: November 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

Part of this work was performed at the Stanford Nano Shared Facilities (SNSF) and Stanford Nanofabrication Facility (SNF). We thank Allen Pei, Yongming Sun, and Kipil Lim for insightful discussion, Michelle Rincon, Christopher Neumann and Feifei Lian for technical assistance.

Return