Journal Home > Volume 10 , Issue 11

Controlling ion transport in nanoconfined spaces is a key task for the creation of smart nanofluidic devices. In this work, redox-active polypyrrole (PPy) polymers are introduced into anodic aluminum oxide (AAO) nanochannels to form smart unipolar nanofluidic diodes (UNDs) for the first time. The ionic transport behavior of the present polypyrrole-engineered UNDs can be controlled through the redox reactions of PPy. Under an applied oxidation potential, conductive PPy exhibits several redox states carrying different charges, following the formation of polarons and bipolarons with different oxidation states. Combined with the asymmetric distribution of PPy in the AAO nanochannels, the UNDs investigated here exhibit redox-switchable ion rectification and ion-gating properties. The influence of the charge asymmetry of the UNDs on their ionic transport behavior is assessed by precisely controlling the length of oxidized PPy segments in the AAO nanochannels and by carrying out theoretical simulations based on the Poisson and Nernst–Planck (PNP) equations.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Redox switch of ionic transport in conductive polypyrrole-engineered unipolar nanofluidic diodes

Show Author's information Qianqian Zhang1,2Zhen Zhang3Hangjian Zhou1Zhiqiang Xie1,2Liping Wen4Zhaoyue Liu1( )Jin Zhai1( )Xungang Diao2
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of EducationBeijing Key Laboratory of Bio-inspired Energy Materials and DevicesSchool of Chemistry and Environment, Beihang UniversityBeijing100191China
School of Physics and Nuclear Energy EngineeringBeihang UniversityBeijing100191China
Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Green PrintingInstitute of Chemistry, Chinese Academy of SciencesBeijing100190China
Laboratory of Bioinspired Smart Interfacial ScienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijing100190China

Abstract

Controlling ion transport in nanoconfined spaces is a key task for the creation of smart nanofluidic devices. In this work, redox-active polypyrrole (PPy) polymers are introduced into anodic aluminum oxide (AAO) nanochannels to form smart unipolar nanofluidic diodes (UNDs) for the first time. The ionic transport behavior of the present polypyrrole-engineered UNDs can be controlled through the redox reactions of PPy. Under an applied oxidation potential, conductive PPy exhibits several redox states carrying different charges, following the formation of polarons and bipolarons with different oxidation states. Combined with the asymmetric distribution of PPy in the AAO nanochannels, the UNDs investigated here exhibit redox-switchable ion rectification and ion-gating properties. The influence of the charge asymmetry of the UNDs on their ionic transport behavior is assessed by precisely controlling the length of oxidized PPy segments in the AAO nanochannels and by carrying out theoretical simulations based on the Poisson and Nernst–Planck (PNP) equations.

Keywords: polypyrrole, redox switch, nanofluidic diodes, ion rectification, ion gating

References(64)

1

Huh, D.; Mills, K. L.; Zhu, X. Y.; Burns, M. A.; Thouless, M. D.; Takayama, S. Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat. Mater. 2007, 6, 424–428.

2

Kalman, E. B.; Vlassiouk, I.; Siwy, Z. S. Nanofluidic bipolar transistors. Adv. Mater. 2008, 20, 293–297.

3

Daiguji, H.; Oka, Y.; Shirono, K. Nanofluidic diode and bipolar transistor. Nano Lett. 2005, 5, 2274–2280.

4

Wu, S. M.; Wildhaber, F.; Vazquez-Mena, O.; Bertsch, A.; Brugger, J.; Renaud, P. Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide. Nanoscale 2012, 4, 5718–5723.

5

Wei, R. S.; Gatterdam, V.; Wieneke, R.; Tampé, R.; Rant, U. Stochastic sensing of proteins with receptor-modified solidstate nanopores. Nat. Nanotechnol. 2012, 7, 257–263.

6

Haque, F.; Li, J. H.; Wu, H. C.; Liang, X. J.; Guo, P. X. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today 2013, 8, 56–74.

7

Lin, L.; Yan, J.; Li, J. H. Small-molecule triggered cascade enzymatic catalysis in hour-glass shaped nanochannel reactor for glucose monitoring. Anal. Chem. 2014, 86, 10546–10551.

8

El-Safty, S. A.; Khairy, M.; Shenashen, M. A.; Elshehy, E. Warkocki, W.; Sakai, M. Optical mesoscopic membrane sensor layouts for water-free and blood-free toxicants. Nano Res. 2015, 8, 3150–3163.

9

Gao, J.; Guo, W.; Feng, D.; Wang, H. T.; Zhao, D. Y.; Jiang, L. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 2014, 136, 12265–12272.

10

Xie, X. J.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 2014, 6, 202–207.

11

Zhang, Q. Q.; Xiao, T. L.; Yan, N.; Liu, Z. Y.; Zhai, J.; Diao, X. G. Alternating current output from a photosynthesisinspired photoelectrochemical cell. Nano Energy 2016, 28, 188–194.

12

Xie, G. H.; Wen, L. P.; Jiang, L. Biomimetic smart nanochannels for power harvesting. Nano Res. 2016, 9, 59–71.

13

Siwy, Z.; Kosińska, I. D.; Fuliński, A.; Martin, C. R. Asymmetric diffusion through synthetic nanopores. Phys. Rev. Lett. 2005, 94, 048102.

14

He, Z. J.; Zhou, J.; Lu, X. H.; Corry, B. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano 2013, 7, 10148–10157.

15

Picallo, C. B.; Gravelle, S.; Joly, L.; Charlaix, E.; Bocquet, L. Nanofluidic osmotic diodes: Theory and molecular dynamics simulations. Phys. Rev. Lett. 2013, 111, 244501.

16

Siwy, Z. S.; Howorka, S. Engineered voltage-responsive nanopores. Chem. Soc. Rev. 2010, 39, 1115–1132.

17

Guo, W.; Tian, Y.; Jiang, L. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. Acc. Chem. Res. 2013, 46, 2834–2846.

18

Hou, X. Smart gating multi-scale pore/channel-based membranes. Adv. Mater. 2016, 28, 7049–7064.

19

Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R. Conical-nanotube ion-current rectifiers: The role of surface charge. J. Am. Chem. Soc. 2004, 126, 10850–10851.

20

Powell, M. R.; Sullivan, M.; Vlassiouk, I.; Constantin, D.; Sudre, O.; Martens, C. C.; Eisenberg, R. S.; Siwy, Z. S. Nanoprecipitation-assisted ion current oscillations. Nat. Nanotechnol. 2008, 3, 51–57.

21

Ali, M.; Nasir, S.; Ramirez, P.; Cervera, J.; Mafe, S.; Ensinger, W. Calcium binding and ionic conduction in single conical nanopores with polyacid chains: Model and experiments. ACS Nano 2012, 6, 9247–9257.

22

Wang, H. M.; Hou, S. N.; Wang, Q. Q.; Wang, Z. W.; Fan, X.; Zhai, J. Dual-response for Hg2+ and Ag+ ions based on biomimetic funnel-shaped alumina nanochannels. J. Mater. Chem. B 2015, 3, 1699–1705.

23

Zhang, Z.; Kong, X. Y.; Xiao, K.; Xie, G. H.; Liu, Q.; Tian, Y.; Zhang, H. C.; Ma, J.; Wen, L. P.; Jiang, L. A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Adv. Mater. 2016, 28, 144–150.

24

de Groot, G. W.; Santonicola, M. G.; Sugihara, K.; Zambelli, T.; Reimhult, E.; Vörös, J.; Vancso, G. J. Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability. ACS Appl. Mater. Interfaces 2013, 5, 1400–1407.

25

Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Single conical nanopores displaying pH-tunable rectifying characteristics. Manipulating ionic transport with zwitterionic polymer brushes. J. Am. Chem. Soc. 2009, 131, 2070–2071.

26

Zhang, Q. Q.; Hu, Z. Y.; Liu, Z. Y.; Zhai, J.; Jiang, L. Light-gating titania/alumina heterogeneous nanochannels with regulatable ion rectification characteristic. Adv. Funct. Mater. 2014, 24, 424–431.

27

Wang, G. L.; Bohaty, A. K.; Zharov, I.; White, H. S. Photon gated transport at the glass nanopore electrode. J. Am. Chem. Soc. 2006, 128, 13553–13558.

28

Zhang, Q. Q.; Liu, Z. Y.; Hou, X.; Fan, X.; Zhai, J.; Jiang, L. Light-regulated ion transport through artificial ion channels based on TiO2 nanotubular arrays. Chem. Commun. 2012, 48, 5901–5903.

29

Xu, Y. L.; Sui, X.; Guan, S.; Zhai, J.; Gao, L. C. Olfactory sensory neuron-mimetic CO2 activated nanofluidic diode with fast response rate. Adv. Mater. 2015, 27, 1851–1855.

30

Harrell, C. C.; Kohli, P.; Siwy, Z.; Martin, C. R. DNAnanotube artificial ion channels. J. Am. Chem. Soc. 2004, 126, 15646–15647.

31

Kalman, E. B.; Sudre, O.; Vlassiouk, I.; Siwy, Z. S. Control of ionic transport through gated single conical nanopores. Anal. Bioanal. Chem. 2009, 394, 413–419.

32

Liu, Q.; Wen, L. P.; Xiao, K.; Lu, H.; Zhang, Z.; Xie, G. H.; Kong, X. Y.; Bo, Z. S.; Jiang, L. A biomimetic voltage-gated chloride nanochannel. Adv. Mater. 2016, 28, 3181–3186.

33

Zhou, Y. H.; Guo, W.; Cheng, J. S.; Liu, Y.; Li, J. H.; Jiang, L. High-temperature gating of solid-state nanopores with thermo-responsive macromolecular nanoactuators in ionic liquids. Adv. Mater. 2012, 24, 962–967.

34

Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 2009, 5, 1287–1291.

35

Pérez-Mitta, G.; Marmisollé, W. A.; Trautmann, C.; Toimil-Molares, M. E.; Azzaroni, O. Nanofluidic diodes with dynamic rectification properties stemming from reversible electrochemical conversions in conducting polymers. J. Am. Chem. Soc. 2015, 137, 15382–15385.

36

Miller, S. A.; Martin, C. R. Redox modulation of electroosmotic flow in a carbon nanotube membrane. J. Am. Chem. Soc. 2004, 126, 6226–6227.

37

Buyukserin, F.; Kohli, P.; Wirtz, M. O.; Martin, C. R. Electroactive nanotube membranes and redox-gating. Small 2007, 3, 266–270.

38

Burgmayer, P.; Murray, R. W. An ion gate membrane: Electrochemical control of ion permeability through a membrane with an embedded electrode. J. Am. Chem. Soc. 1982, 104, 6139–6140.

39

Burgmayer, P.; Murray, R. W. Ion gate electrodes. Polypyrrole as a switchable ion conductor membrane. J. Phys. Chem. 1984, 88, 2515–2521.

40

Wang, L. X.; Li, X. G.; Yang, Y. L. Preparation, properties and applications of polypyrroles. React. Funct. Polym. 2001, 47, 125–139.

41

Fattahi, P.; Yang, G.; Kim, G.; Abidian, M. R. A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 2014, 26, 1846–1885.

42

Jeon, G.; Yang, S. Y.; Byun, J.; Kim, J. K. Electrically actuatable smart nanoporous membrane for pulsatile drug release. Nano Lett. 2011, 11, 1284–1288.

43

Heeger, A. J.; Kivelson, S.; Schrieffer, J. R.; Su, W. P. Solitons in conducting polymers. Rev. Mod. Phys. 1988, 60, 781–850.

44

Lee, D.; Swager, T. M. Defining space around conducting polymers: Reversible protonic doping of a canopied polypyrrole. J. Am. Chem. Soc. 2003, 125, 6870–6871.

45

Dai, Y. F.; Wei, C. W.; Blaisten-Barojas, E. Bipolarons and polaron pairs in oligopyrrole dications. Comput. Theor. Chem. 2012, 993, 7–12.

46

Santos, M. J. L.; Brolo, A. G.; Girotto, E. M. Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry. Electrochim. Acta 2007, 52, 6141–6145.

47

Wang, X. D.; Gu, X. S.; Yuan, C. W.; Chen, S. J.; Zhang, P. Y.; Zhang, T. Y.; Yao, J.; Chen, F.; Chen, G. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J. Biomed. Mater. Res. A 2004, 68A, 411–422.

48

George, P. M.; Lyckman, A. W.; LaVan, D. A.; Hegde, A.; Leung, Y.; Avasare, R.; Testa, C.; Alexander, P. M.; Langer, R.; Sur, M. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 2005, 26, 3511–3519.

49

Siwy, Z.; Apel, P.; Baur, D.; Dobrev, D. D.; Korchev, Y. E.; Neumann, R.; Spohr, R.; Trautmann, C.; Voss, K. O. Preparation of synthetic nanopores with transport properties analogous to biological channels. Surf. Sci. 2003, 532–535, 1061–1066.

50

Gao, J.; Guo, W.; Geng, H.; Hou, X.; Shuai, Z. G.; Jiang, L. Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication. Nano Res. 2012, 5, 99–108.

51

Zhang, H. C.; Tian, Y.; Hou, J.; Hou, X.; Hou, G. L.; Ou, R. W.; Wang, H. T.; Jiang, L. Bioinspired smart gate-locationcontrollable single nanochannels: Experiment and theoretical simulation. ACS Nano 2015, 9, 12264–12273.

52

Vlassiouk, I.; Smirnov, S.; Siwy, Z. Nanofluidic ionic diodes. Comparison of analytical and numerical solutions. ACS Nano 2008, 2, 1589–1602.

53

Karnik, R.; Duan, C. H.; Castelino, K.; Daiguji, H.; Majumdar, A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 2007, 7, 547–551.

54

Mortimer, R. J. Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147–156.

55

Wang, X. Z.; Smela, E. Color and volume change in PPy(DBS). J. Phys. Chem. C 2009, 113, 359–368.

56

Rezaei, M.; Azimian, A. R.; Semiromi, D. T. The surface charge density effect on the electro-osmotic flow in a nanochannel: A molecular dynamics study. Heat Mass Transfer 2015, 51, 661–670.

57

Liu, J.; Kvetny, M.; Feng, J. Y.; Wang, D. C.; Wu, B. H.; Brown, W.; Wang, G. L. Surface charge density determination of single conical nanopores based on normalized ion current rectification. Langmuir 2012, 28, 1588–1595.

58

Li, C. Y.; Ma, F. X.; Wu, Z. Q.; Gao, H. L.; Shao, W. T.; Wang, K.; Xia, X. H. Solution-pH-modulated rectification of ionic current in highly ordered nanochannel arrays patterned with chemical functional groups at designed positions. Adv. Funct. Mater. 2013, 23, 3836–3844.

59

Zhang, Q. Q.; Liu, Z. Y.; Wang, K. F.; Zhai, J. Organic/inorganic hybrid nanochannels based on polypyrroleembedded alumina nanopore arrays: pH- and light-modulated ion transport. Adv. Funct. Mater. 2015, 25, 2091–2098.

60

Woermann, D. Electrochemical transport properties of a cone-shaped nanopore: High and low electrical conductivity states depending on the sign of an applied electrical potential difference. Phys. Chem. Chem. Phys. 2003, 5, 1853–1858.

61

Meng, Z. Y.; Bao, H.; Wang, J. T.; Jiang, C. D.; Zhang, M. H.; Zhai, J.; Jiang, L. Artificial ion channels regulating lightinduced ionic currents in photoelectrical conversion systems. Adv. Mater. 2014, 26, 2329–2334.

62

Huyen, D. N.; Tung, N. T.; Vinh, T. D.; Thien, N. D. Synergistic effects in the gas sensitivity of polypyrrole/single wall carbon nanotube composites. Sensors 2012, 12, 7965–7974.

63

Kosmulski, M. pH-dependent surface charging and points of zero charge Ⅱ. Update. J. Colloid Interface Sci. 2004, 275, 214–224.

64

Guo, Y. B.; Tang, Q. X.; Liu, H. B.; Zhang, Y. J.; Li, Y. L.; Hu, W. P.; Wang, S.; Zhu, D. B. Light-controlled organic/inorganic P-N junction nanowires. J. Am. Chem. Soc. 2008, 130, 9198–9199.

File
nr-10-11-3715_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 December 2016
Revised: 05 March 2017
Accepted: 12 March 2017
Published: 17 July 2017
Issue date: November 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 21571011, 21641006), National Basic Research Program of China (No. 2014CB931803), Fundamental Research Funds for the Central Universities (Nos. YWF-15-HHXY-019, YWF-16-JCTD-B-03) and China Postdoctoral Science Foundation Grant (No. 2015M580035).

Return