Journal Home > Volume 10 , Issue 12

Current research on vanadium oxides in lithium ion batteries (LIBs) considers them as cathode materials, whereas they are rarely studied for use as anodes in LIBs because of their low electrical conductivity and rapid capacity fading. In this work, hydrogenated vanadium oxide nanoneedles were prepared and incorporated into freeze-dried graphene foam. The hydrogenated vanadium oxides show greatly improved charge-transfer kinetics, which lead to excellent electrochemical properties. When tested as anode materials (0.005–3.0 V vs. Li/Li+) in LIBs, the sample activated at 600 ℃ exhibits high specific capacity (~941 mA·h·g-1 at 100 mA·g-1) and high-rate capability (~504 mA·h·g-1 at 5 A·g-1), as well as excellent cycling performance (~285 mA·h·g-1 in the 1, 000th cycle at 5 A·g-1). These results demonstrate the promising application of vanadium oxides as anodes in LIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hydrogenated vanadium oxides as an advanced anode material in lithium ion batteries

Show Author's information Yufei Zhang1,2,3,§Huanwen Wang3,§Jun Yang2,3Haosen Fan3Yu Zhang3Zhengfei Dai3Yun Zheng3Wei Huang2( )Xiaochen Dong2( )Qingyu Yan3( )
College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhot010021China
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)Nanjing210009China
School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore

§Yufei Zhang and Huanwen Wang contributed equally to this work.

Abstract

Current research on vanadium oxides in lithium ion batteries (LIBs) considers them as cathode materials, whereas they are rarely studied for use as anodes in LIBs because of their low electrical conductivity and rapid capacity fading. In this work, hydrogenated vanadium oxide nanoneedles were prepared and incorporated into freeze-dried graphene foam. The hydrogenated vanadium oxides show greatly improved charge-transfer kinetics, which lead to excellent electrochemical properties. When tested as anode materials (0.005–3.0 V vs. Li/Li+) in LIBs, the sample activated at 600 ℃ exhibits high specific capacity (~941 mA·h·g-1 at 100 mA·g-1) and high-rate capability (~504 mA·h·g-1 at 5 A·g-1), as well as excellent cycling performance (~285 mA·h·g-1 in the 1, 000th cycle at 5 A·g-1). These results demonstrate the promising application of vanadium oxides as anodes in LIBs.

Keywords: vanadium oxides, hydrogenation, 3D structure, rechargeable lithium ion battery (LIB) anode

References(34)

1

Fan, H. S.; Yu, H.; Wu, X. L.; Zhang, Y.; Luo, Z. Z.; Wang, H. W.; Guo, Y. Y.; Madhavi, S.; Yan, Q. Y. Controllable preparation of square nickel chalcogenide (NiS and NiSe2) nanoplates for superior Li/Na ion storage properties. ACS Appl. Mater. Interfaces 2016, 8, 25261–25267.

2

Tan, L. P.; Lu, Z. Y.; Tan, H. T.; Zhu, J. X.; Rui, X. H.; Yan, Q. Y.; Hng, H. H. Germanium nanowires-based carbon composite as anodes for lithium-ion batteries. J. Power Sources 2012, 206, 253–258.

3

Yu, M. P.; Li, R.; Wu, M. M.; Shi, G. Q. Graphene materials for lithium–sulfur batteries. Energy Storage Mater. 2015, 1, 51–73.

4

Liu, D. H.; Lu, H. Y.; Wu, X. L.; Hou, B. H.; Wan, F.; Bao, S. D.; Yan, Q. Y.; Xie, H. M.; Wang, R. S. Constructing the optimal conductive network in MnO-based nanohybrids as high-rate and long-life anode materials for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19738–19746.

5

Rui, X. H.; Lu, Z. Y.; Yu, H.; Yang, D.; Hng, H. H.; Lim, T. M.; Yan, Q. Y. Ultrathin V2O5 nanosheet cathodes: Realizing ultrafast reversible lithium storage. Nanoscale 2013, 5, 556–560.

6

Rui, X. H.; Lu, Z. Y.; Yin, Z. Y.; Sim, D. H.; Xiao, N.; Lim, T. M.; Hng, H. H.; Zhang, H.; Yan, Q. Y. Oriented molecular attachments through sol–gel chemistry for synthesis of ultrathin hydrated vanadium pentoxide nanosheets and their applications. Small 2013, 9, 716–721.

7

Yu, J. P.; Han, Z. H.; Hu, X. H.; Zhan, H.; Zhou, Y. H.; Liu, X. J. The investigation of Ti-modified LiCoO2 materials for lithium ion battery. J. Power Sources 2014, 262, 136–139.

8

Lee, M. J.; Lee, S.; Oh, P.; Kim, Y.; Cho, J. High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries. Nano Lett. 2014, 14, 993–999.

9

Nethravathi, C.; Viswanath, B.; Michael, J.; Rajamath, M. Hydrothermal synthesis of a monoclinic VO2 nanotube– graphene hybrid for use as cathode material in lithium ion batteries. Carbon 2012, 50, 4839–4846.

10

Wu, C. Z.; Xie, Y. Promising vanadium oxide and hydroxide nanostructures: From energy storage to energy saving. Energy Environ. Sci. 2010, 3, 1191–1206.

11

Liu, Y. Y.; Li, J. G.; Zhang, Q. F.; Zhou, N.; Uchaker, E.; Cao, G. Z. Porous nanostructured V2O5 film electrode with excellent Li-ion intercalation properties. Electrochem. Commun. 2011, 13, 1276–1279.

12

Wei, M. D.; Sugihara, H.; Honma, I.; Ichihara, M.; Zhou, H. S. A new metastable phase of crystallized V2O4·0.25H2O nanowires: Synthesis and electrochemical measurements. Adv. Mater. 2005, 17, 2964–2969.

13

Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165–180.

14

Liu, J.; Xia, H.; Xue, D. F.; Lu, L. Double-shelled nano­capsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc. 2009, 131, 12086–12087.

15

Jiang, H.; Jia, G. Q.; Hu, Y. J.; Cheng, Q. L.; Fu, Y.; Li, C. Z. Ultrafine V2O3 nanowire embedded in carbon hybrids with enhanced lithium storage capability. Ind. Eng. Chem. Res. 2015, 54, 2960–2965.

16

Niu, C. J.; Meng, J. S.; Han, C. H.; Zhao, K. N.; Yan, M. Y.; Mai, L. Q. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 2014, 14, 2873–2878.

17

Yang, S. B.; Gong, Y. J.; Liu, Z.; Zhan, L.; Hashim, D. P.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 2013, 13, 1596–1601.

18

Liu, D. H.; Lu, H. Y.; Wu, X. L.; Wang, J.; Yan, X.; Zhang, J. P.; Geng, H. B.; Zhang, Y.; Yan, Q. Y. A new strategy for developing superior electrode materials for advanced batteries: Using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Nanoscale Horiz. 2016, 1, 496–501.

19

Chen, M. J.; Liao, S. H.; Yang, H. C.; Lee, H. Y.; Liu, Y. J.; Chen, H. H.; Horng, H. E.; Yang, S. Y. Characterizing longitudinal and transverse relaxation rates of ferrofluids in microtesla magnetic fields. J. Appl. Phys. 2011, 110, 123911.

20

Gutiérrez, M. C.; Ferrer, M. L.; del Monte, F. Ice-templated materials: Sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem. Mater. 2008, 20, 634–648.

21

Pawelec, K. M.; Husmann, A.; Best, S. M.; Cameron, R. E. A design protocol for tailoring ice-templated scaffold structure. J. Roy. Soc. Interface 2014, 11, 20130958.

22

Jiang, L. L.; Fan, Z. J. Design of advanced porous graphene materials: From graphene nanomesh to 3D architectures. Nanoscale 2014, 6, 1922–1945.

23

Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; De Gryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Related Phenomena 2004, 135, 167–175.

24

Jiang, L.; Qu, Y.; Ren, Z. Y.; Yu, P.; Zhao, D. D.; Zhou, W.; Wang, L.; Fu, H. G. In situ carbon-coated yolk–shell V2O3 microspheres for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 1595–1601.

25

Hryha, E.; Rutqvist, E.; Nyborg, L. Stoichiometric vanadium oxides studied by XPS. Surf. Interface Anal. 2012, 44, 1022–1025.

26

Peng, C.; Xiao, F.; Yang, J.; Li, Z. H.; Lei, G. T.; Xiao, Q. Z.; Ding, Y. H.; Hu, Z. L. Carbon-encapsulated Mn-doped V2O5 nanorods with long span life for high-power rechargeable lithium batteries. Electrochim. Acta 2016, 192, 216–226.

27

Tan, H. T.; Rui, X. H.; Yu, H.; Liu, W. L.; Xu, C.; Xu, Z. C.; Hng, H. H.; Yan, Q. Y. Aqueous-based chemical route toward ambient preparation of multicomponent core–shell nanotubes. ACS Nano 2014, 8, 4004–4014.

28

Peng, X.; Zhang, X. M.; Wang, L.; Hu, L. S.; Cheng, S. H. S.; Huang, C.; Gao, B.; Ma, F.; Huo, K. F.; Chu, P. K. Hydrogenated V2O5 nanosheets for superior lithium storage properties. Adv. Funct. Mater. 2016, 26, 784–791.

29

Dong, Y. C.; Ma, R. G.; Hu, M. J.; Cheng, H.; Lee, J. M.; Li, Y. Y.; Zapien, J. A. Polymer-pyrolysis assisted synthesis of vanadium trioxide and carbon nanocomposites as high performance anode materials for lithium-ion batteries. J. Power Sources 2014, 261, 184–187.

30

Shi, Y.; Zhang, Z. J.; Wexler, D.; Chou, S. L.; Gao, J.; Abruña, H. D.; Li, H. J.; Liu, H. K.; Wu, Y. P.; Wang, J. Z. Facile synthesis of porous V2O3/C composites as lithium storage material with enhanced capacity and good rate capability. J. Power Sources 2015, 275, 392–398.

31

Wang, Y.; Zhang, H. J.; Admar, A. S.; Luo, J. Z.; Wong, C. C.; Borgna, A.; Lin, J. Y. Improved cyclability of lithium-ion battery anode using encapsulated V2O3 nanostructures in well-graphitized carbon fiber. RSC Adv. 2012, 2, 5748–5753.

32

Rui, X. H.; Tan, H. T.; Sim, D.; Liu, W. L.; Xu, C.; Hng, H. H.; Yazami, R.; Lim, T. M.; Yan, Q. Y. Template-free synthesis of urchin-like Co3O4 hollow spheres with good lithium storage properties. J. Power Sources 2013, 222, 97–102.

33

Sun, W. P.; Rui, X. H.; Yang, D.; Sun, Z. Q.; Li, B.; Zhang, W. Y.; Zong, Y.; Madhavi, S.; Dou, S. X.; Yan, Q. Y. Two-dimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano 2015, 9, 11371–11381.

34

Tang, S. B.; Lai, M. O.; Lu, L. Li-ion diffusion in highly (0 0 3) oriented LiCoO2 thin film cathode prepared by pulsed laser deposition. J. Alloys Compd. 2008, 449, 300–303.

File
nr-10-12-4266_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 December 2016
Revised: 06 March 2017
Accepted: 12 March 2017
Published: 15 July 2017
Issue date: December 2017

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

The project was supported by National Natural Science Foundation of China (Nos.61525402, 5161101159), Key University Science Research Project of Jiangsu Province (No. 15KJA430006), QingLan Project and the program of China Scholarships Council (No. 201506810014). We gratefully acknowledge Singapore MOE AcRF Tier 1 grants 2016-T1-002-065, RG113/15, Singapore A*STAR Pharos program SERC 1527200022.

Return