Journal Home > Volume 10 , Issue 11

Bismuth oxides are important battery materials owing to their ability to electrochemically react and alloy with Li, which results in a high capacity level, which substantially exceeds that of graphite anodes. However, this high Li-storage capability is often compromised by the poor electrochemical cyclability and rate capability of bismuth oxides. To address these challenges, in this study, we design a hybrid architecture composed of reduced graphene oxide (rGO) nanosheets decorated with ultrafine Bi2O2.33 nanodots (denoted as Bi2O2.33/rGO), based on the selective and controlled hydrolysis of a Bi precursor on graphene oxide and subsequent crystallization via solvothermal treatment. Because of its high conductivity, large accessible area, and inherent flexibility, the Bi2O2.33/rGO hybrid exhibits stable and robust Li storage (346 mA·h·g-1 over 600 cycles at 10 C), significantly outperforming previously reported Bi-based materials. This superb performance indicates that decorating rGO nanosheets with ultrafine nanodots may introduce new possibilities for the development of stable and robust metal-oxide electrodes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reduced graphene oxide decorated with Bi2O2.33 nanodots for superior lithium storage

Show Author's information Haichen Liang1Xiyan Liu2Dongliang Gao2Jiangfeng Ni1( )Yan Li2( )
College of Physics, Optoelectronics and EnergyCollaborative Innovation Center of Suzhou Nano Science and Technology, and Center for Energy Conversion Materials & Physics (CECMP), Soochow UniversitySuzhou215006China
Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing National Laboratory for Molecular Science(BNLMS)College of Chemistry and Molecular EngineeringState Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking UniversityBeijing100871China

Abstract

Bismuth oxides are important battery materials owing to their ability to electrochemically react and alloy with Li, which results in a high capacity level, which substantially exceeds that of graphite anodes. However, this high Li-storage capability is often compromised by the poor electrochemical cyclability and rate capability of bismuth oxides. To address these challenges, in this study, we design a hybrid architecture composed of reduced graphene oxide (rGO) nanosheets decorated with ultrafine Bi2O2.33 nanodots (denoted as Bi2O2.33/rGO), based on the selective and controlled hydrolysis of a Bi precursor on graphene oxide and subsequent crystallization via solvothermal treatment. Because of its high conductivity, large accessible area, and inherent flexibility, the Bi2O2.33/rGO hybrid exhibits stable and robust Li storage (346 mA·h·g-1 over 600 cycles at 10 C), significantly outperforming previously reported Bi-based materials. This superb performance indicates that decorating rGO nanosheets with ultrafine nanodots may introduce new possibilities for the development of stable and robust metal-oxide electrodes.

Keywords: reduced graphene oxide, bismuth oxide, nanodot, Li storage

References(42)

1

Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444-11502.

2

Li, Y. D.; Wang, J. W.; Deng, Z. X.; Wu, Y. Y.; Sun, X. M.; Yu, D. P.; Yang, P. D. Bismuth nanotubes: A rational low- temperature synthetic route. J. Am. Chem. Soc. 2001, 123, 9904-9905.

3

Park, C. M.; Yoon, S.; Lee, S. I.; Sohn, H. J. Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries. J. Power Sources 2009, 186, 206-210.

4

Jung, H.; Park, C. M.; Sohn, H. J. Bismuth sulfide and its carbon nanocomposite for rechargeable lithium-ion batteries. Electrochim. Acta 2011, 56, 2135-2139.

5

Chen, C. J.; Hu, P.; Hu, X. L.; Mei, Y. N.; Huang, Y. H. Bismuth oxyiodide nanosheets: A novel high-energy anode material for lithium-ion batteries. Chem. Commun. 2015, 51, 2798-2801.

6

Sun, C. F.; Hu, J. K.; Wang, P.; Cheng, X. Y.; Lee, S. B.; Wang, Y. H. Li3PO4 matrix enables a long cycle life and high energy efficiency bismuth-based battery. Nano Lett. 2016, 16, 5875-5882.

7

Zhao, Y.; Gao, D. L.; Ni, J. F.; Gao, L. J.; Yang, J.; Li, Y. One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res. 2014, 7, 765-773.

8

Ni, J. F.; Zhao, Y.; Liu, T. T.; Zheng, H. H.; Gao, L. J.; Yan, C. L.; Li, L. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 2014, 4, 1400798.

9

Zhang, Z. A.; Zhou, C. K.; Huang, L.; Wang, X. W.; Qu, Y. H.; Lai, Y. Q.; Li, J. Synthesis of bismuth sulfide/reduced graphene oxide composites and their electrochemical properties for lithium ion batteries. Electrochim. Acta 2013, 114, 88-94.

10

Zhao, Y.; Liu, T. T.; Xia, H.; Zhang, L.; Jiang, J. X.; Shen, M.; Ni, J. F.; Gao, L. J. Branch-structured Bi2S3-CNT hybrids with improved lithium storage capability. J. Mater. Chem. A 2014, 2, 13854-13858.

11

Liu, T. T.; Zhao, Y.; Gao, L. J.; Ni, J. F. Engineering Bi2O3- Bi2S3 heterostructure for superior lithium storage. Sci. Rep. 2015, 5, 9307.

12

Gopalsamy, K.; Xu, Z.; Zheng, B. N.; Huang, T. Q.; Kou, L.; Zhao, X. L.; Gao, C. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors. Nanoscale 2014, 6, 8595-8600.

13

Xu, H. H.; Hu, X. L.; Yang, H. L.; Sun, Y. M.; Hu, C. C.; Huang, Y. H. Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2nanoflowers: Larger areal mass promises higher energy density. Adv. Energy Mater. 2015, 5, 1401882.

14

Zheng, F. L.; Li, G. R.; Ou, Y. N.; Wang, Z. L.; Su, C. Y.; Tong, Y. X. Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chem. Commun. 2010, 46, 5021-5023.

15

Li, Z.; Zhang, W.; Tan, Y. Y.; Hu, J. B.; He, S. Y.; Stein, A.; Tang, B. Three-dimensionally ordered macroporous β-Bi2O3 with enhanced electrochemical performance in a Li-ion battery. Electrochim. Acta 2016, 214, 103-109.

16

Li, Y. L.; Trujillo, M. A.; Fu, E. G.; Patterson, B.; Fei, L.; Xu, Y.; Deng, S. G.; Smirnov, S.; Luo, H. M. Bismuth oxide: A new lithium-ion battery anode. J. Mater. Chem. A 2013, 1, 12123-12127.

17

Wang, H.; Yang, H. X.; Lu, L. Topochemical synthesis of Bi2O3 microribbons derived from a bismuth oxalate precursor as high-performance lithium-ion batteries. RSC Adv. 2014, 4, 17483-17489.

18

Gao, D. L.; Zhang, Z. Y.; Ding, L.; Yang, J.; Li, Y. Preparation and electrocatalytic properties of triuranium octoxide supported on reduced graphene oxide. Nano Res. 2015, 8, 546-553.

19

Wang, H. L.; Dai, H. J. Strongly coupled inorganic-nano- carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088-3113.

20

Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

21

Zhang, W.; Liu, Y. T.; Chen, C. J.; Li, Z.; Huang, Y. H.; Hu, X. L. Flexible and binder-free electrodes of Sb/rGO and Na3V2(PO4)3/rGO nanocomposites for sodium-ion batteries. Small 2015, 11, 3822-3829.

22

Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849-15857.

23

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013-2036.

24

Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729-736.

25

Fang, W.; Zhang, N. Q.; Fan, L. S.; Sun, K. N. Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries. J. Power Sources 2016, 333, 30-36.

26

Nithya, C. Bi2O3@reduced graphene oxide nanocomposite: An anode material for sodium-ion storage. ChemPlusChem 2015, 80, 1000-1006.

27

Li, L.; Yang, Y. W.; Li, G. H.; Zhang, L. D. Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes. Small 2006, 2, 548-553.

28

Wang, J. W.; Wang, X.; Peng, Q.; Li, Y. D. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres. Inorg. Chem. 2004, 43, 7552-7556.

29

Jiang, S. Q.; Wang, L.; Hao, W. C.; Li, W. X.; Xin, H. J.; Wang, W. W.; Wang, T. M. Visible-light photocatalytic activity of S-doped α-Bi2O3. J. Phys. Chem. C 2015, 119, 14094-14101.

30

Ni, J. F.; Li, Y. Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1600278.

31

Ni, J. F.; Zhang, L.; Fu, S. D.; Savilov, S. V.; Aldoshin, S. M.; Lu, L. A review on integrating nano-carbons into polyanion phosphates and silicates for rechargeable lithium batteries. Carbon 2015, 92, 15-25.

32

Luo, B.; Qiu, T. F.; Ye, D. L.; Wang, L. Z.; Zhi, L. J. Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy 2016, 22, 232-240.

33

Liu, J.; Yu, L. T.; Wu, C.; Wen, Y. R.; Yin, K. B.; Chiang, F. K.; Hu, R. Z.; Liu, J. W.; Sun, L. T.; Gu, L. et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017, 17, 2034-2042.

34

Ni, J. F.; Zhao, Y.; Li, L.; Mai, L. Q. Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy 2015, 11, 129-135.

35

Liang, H. C.; Ni, J. F.; Li, L. Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage. Nano Energy 2017, 33, 213-220.

36

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.

37

Wang, Y. G.; Hong, Z. S.; Wei, M. D.; Xia, Y. Y. Layered H2Ti6O13-nanowires: A new promising pseudocapacitive material in non-aqueous electrolyte. Adv. Funct. Mater. 2012, 22, 5185-5193.

38

Ni, J. F.; Fu, S. D.; Wu, C.; Zhao, Y.; Maier, J.; Yu, Y.; Li, L. Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv. Energy Mater. 2016, 6, 1502568.

39

Fu, S. D.; Ni, J. F.; Xu, Y.; Zhang, Q.; Li, L. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett. 2016, 16, 4544-4551.

40

Feng, N. N.; He, P.; Zhou, H. S. Critical challenges in rechargeable aprotic Li-O2 batteries. Adv. Energy Mater. 2016, 6, 1502303.

41

Yang, S. X.; He, P.; Zhou, H. S. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li-air/CO2 battery through tracing missing oxygen. Energy Environ. Sci. 2016, 9, 1650-1654.

42

Jiang, J.; He, P.; Tong, S. F.; Zheng, M. B.; Lin, Z. X.; Zhang, X. P.; Shi, Y.; Zhou, H. S. Ruthenium functionalized graphene aerogels with hierarchical and three-dimensional porosity as a free-standing cathode for rechargeable lithium- oxygen batteries. NPG Asia Mater. 2016, 8, e239.

File
nr-10-11-3690_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 January 2017
Revised: 06 March 2017
Accepted: 09 March 2017
Published: 11 July 2017
Issue date: November 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

We acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51672182 and 51302181), the Natural Science Foundation of Jiangsu Province (No. BK20151219), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Return