AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The study of the interactions between graphene and Ge(001)/Si(001)

Pawel Dabrowski1( )Maciej Rogala1Iwona Pasternak2Jacek Baranowski2Wlodzimierz Strupinski2Marek Kopciuszynski4Ryszard Zdyb4Mieczyslaw Jalochowski4Iaroslav Lutsyk1,3Zbigniew Klusek1
Department of Solid State Physics, Faculty of Physics and Applied InformaticsUniversity of Lodz, Pomorska 149/15390-236Lodz, Poland
Institute of Electronic Materials TechnologyWolczynska 13301-919Warsaw, Poland
Department of Solid State PhysicsYuriy Fedkovych Chernivtsi National University, Kotsubinsky 258012Chernivtsi, Ukraine
Institute of PhysicsMaria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 120-031Lublin, Poland
Show Author Information

Graphical Abstract

Abstract

The interaction between graphene and germanium surfaces was investigated using a combination of microscopic and macroscopic experimental techniques and complementary theoretical calculations. Density functional theory (DFT) calculations for different reconstructions of the Ge(001) surface showed that the interactions between graphene and the Ge(001) surface introduce additional peaks in the density of states, superimposed on the graphene valence and conduction energy bands. The growth of graphene induces nanofaceting of the Ge(001) surface, which exhibits well-organized hill and valley structures. The graphene regions covered by hills are of high quality and exhibit an almost linear dispersion relation, which indicates weak graphene-germanium interactions. On the other hand, the graphene component occupying valley regions is significantly perturbed by the interaction with germanium. It was also found that the stronger graphene-germanium interaction observed in the valley regions is connected with a lower local electrical conductivity. Annealing of graphene/Ge(001)/Si(001) was performed to obtain a more uniform surface. This process results in a surface characterized by negligible hill and valley structures; however, the graphene properties unexpectedly deteriorated with increasing uniformity of the Ge(001) surface. To sum up, it was shown that the mechanism responsible for the formation of local conductivity inhomogeneities in graphene covering the Ge(001) surface is related to the different strength of graphene-germanium interactions. The present results indicate that, in order to obtain high-quality graphene, the experimental efforts should focus on limiting the interactions between germanium and graphene, which can be achieved by adjusting the growth conditions.

Electronic Supplementary Material

Download File(s)
nr-10-11-3648_ESM.pdf (1.6 MB)

References

1

Yi, M.; Shen, Z. G. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700-11715.

2

Pei, S. F.; Cheng, H. -M. The reduction of graphene oxide. Carbon 2012, 50, 3210-3228.

3

Rogala, M.; Dabrowski, P.; Kowalczyk, P. J.; Wlasny, I.; Kozlowski, W.; Busiakiewicz, A.; Karaduman, I.; Lipinska, L.; Baranowski, J. M.; Klusek, Z. The observer effect in graphene oxide—How the standard measurements affect the chemical and electronic structure. Carbon 2016, 103, 235-241.

4

Zhu, M. M.; Du, Z. H.; Yin, Z. Y.; Zhou, W. W.; Liu, Z. D.; Tsang, S. H.; Teo, E. H. T. Low-temperature in situ growth of graphene on metallic substrates and its application in anticorrosion. ACS Appl. Mater. Interfaces 2016, 8, 502-510.

5

Batzill, M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 2012, 67, 83-115.

6

Norimatsu, W.; Kusunoki, M. Epitaxial graphene on SiC{0001}: Advances and perspectives. Phys. Chem. Chem. Phys. 2014, 16, 3501-3511.

7

Strupinski, W.; Grodecki, K.; Wysmolek, A.; Stepniewski, R.; Szkopek, T.; Gaskell, P. E.; Grüneis, A.; Haberer, D.; Bozek, R.; Krupka, J. et al. Graphene epitaxy by chemical vapor deposition on SiC. Nano Lett. 2011, 11, 1786-1791.

8

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. -S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574-578.

9

Wlasny, I.; Dabrowski, P.; Rogala, M.; Kowalczyk, P. J.; Pasternak, I.; Strupinski, W.; Baranowski, J. M.; Klusek, Z. Role of graphene defects in corrosion of graphene-coated Cu(111) surface. Appl. Phys. Lett. 2013, 102, 111601.

10

Hallam, T.; Berner, N. C.; Yim, C.; Duesberg, G. S. Strain, bubbles, dirt, and folds: A study of graphene polymer-assisted transfer. Adv. Mater. Interfaces 2014, 1, 1400115.

11

Riedl, C.; Coletti, C.; Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0001): A review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D: Appl. Phys. 2010, 43, 374009.

12

Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

13

Oliveira, M. H., Jr.; Schumann, T.; Fromm, F.; Koch, R.; Ostler, M.; Ramsteiner, M.; Seyller, T.; Lopes, J. M. J.; Riechert, H. Formation of high-quality quasi-free-standing bilayer graphene on SiC(0001) by oxygen intercalation upon annealing in air. Carbon 2013, 52, 83-89.

14

Velez-Fort, E.; Mathieu, C.; Pallecchi, E.; Pigneur, M.; Silly, M. G.; Belkhou, R.; Marangolo, M.; Shukla, A.; Sirotti, F.; Ouerghi, A. Epitaxial graphene on 4H-SiC(0001) grown under nitrogen flux: Evidence of low nitrogen doping and high charge transfer. ACS Nano 2012, 6, 10893-10900.

15

Dabrowski, P.; Rogala, M.; Wlasny, I.; Klusek, Z.; Kopciuszynski, M.; Jalochowski, M.; Strupinski, W.; Baranowski, J. M. Nitrogen doped epitaxial graphene on 4H-SiC(0001)—Experimental and theoretical study. Carbon 2015, 94, 214-223.

16

Thanh Trung, P.; Campos-Delgado, J.; Joucken, F.; Colomer, J. -F.; Hackens, B.; Raskin, J. -P.; Santos, C. N.; Robert, S. Direct growth of graphene on Si(111). J. Appl. Phys. 2014, 115, 223704.

17

Ochedowski, O.; Begall, G.; Scheuschner, N.; El Kharrazi, M.; Maultzsch, J.; Schleberger, M. Graphene on Si(111)7×7. Nanotechnology 2012, 23, 405708.

18

Dang, X. J.; Dong, H. L.; Wang, L.; Zhao, Y. F.; Guo, Z. Y.; Hou, T. J.; Li, Y. Y.; Lee, S. -T. Semiconducting graphene on silicon from first-principles calculations. ACS Nano 2015, 9, 8562-8568.

19

Ambrosi, A.; Pumera, M. The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale 2014, 6, 472-476.

20

Lupina, G.; Kitzmann, J.; Costina, I.; Lukosius, M.; Wenger, C.; Wolff, A.; Vaziri, S.; Östling, M.; Pasternak, I.; Krajewska, A. et al. Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 2015, 9, 4776-4785.

21

Kiraly, B.; Jacobberger, R. M.; Mannix, A. J.; Campbell, G. P.; Bedzyk, M. J.; Arnold, M. S.; Hersam, M. C.; Guisinger, N. P. Electronic and mechanical properties of graphene-germanium interfaces grown by chemical vapor deposition. Nano Lett. 2015, 15, 7414-7420.

22

Cavallo, F.; Delgado, R. R.; Kelly, M. M.; Pérez, J. R. S.; Schroeder, D. P.; Xing, H. G.; Eriksson, M. A.; Lagally, M. G. Exceptional charge transport properties of graphene on germanium. ACS Nano 2014, 8, 10237-10245.

23

Jacobberger, R. M.; Kiraly, B.; Fortin-Deschenes, M.; Levesque, P. L.; McElhinny, K. M.; Brady, G. J.; Rojas Delgado, R.; Singha Roy, S.; Mannix, A.; Lagally, M. G. et al. Direct oriented growth of armchair graphene nanoribbons on germanium. Nat. Commun. 2015, 6, 8006.

24

Lippert, G.; Dąbrowski, J.; Schroeder, T.; Schubert, M. A.; Yamamoto, Y.; Herziger, F.; Maultzsch, J.; Baringhaus, J.; Tegenkamp, C.; Asensio, M. C. et al. Graphene grown on Ge(001) from atomic source. Carbon 2014, 75, 104-112.

25

Wang, G.; Zhang, M.; Zhu, Y.; Ding, G. Q.; Jiang, D.; Guo, Q. L.; Liu, S.; Xie, X. M.; Chu, P. K.; Di, Z. F. et al. Direct growth of graphene film on germanium substrate. Sci. Rep. 2013, 3, 2465.

26

Lee, J. -H.; Lee, E. K.; Joo, W. -J.; Jang, Y.; Kim, B. -S.; Lim, J. Y.; Choi, S. -H.; Ahn, S. J.; Ahn, J. R.; Park, M. -H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286-289.

27

Dai, J. Y.; Wang, D. X.; Zhang, M.; Niu, T. C.; Li, A.; Ye, M.; Qiao, S.; Ding, G. Q.; Xie, X. M.; Wang, Y. Q. et al. How graphene islands are unidirectionally aligned on the Ge(110) surface. Nano Lett. 2016, 16, 3160-3165.

28

Pasternak, I.; Dabrowski, P.; Ciepielewski, P.; Kolkovsky, V.; Klusek, Z.; Baranowski, J. M.; Strupinski, W. Large-area high-quality graphene on Ge(001)/Si(001) substrates. Nanoscale 2016, 8, 11241-11247.

29

Pasternak, I.; Wesolowski, M.; Jozwik, I.; Lukosius, M.; Lupina, G.; Dabrowski, P.; Baranowski, J. M.; Strupinski, W. Graphene growth on Ge(100)/Si(100) substrates by CVD method. Sci. Rep. 2016, 6, 21773.

30

Dabrowski, J.; Lippert, G.; Avila, J.; Baringhaus, J.; Colambo, I.; Dedkov, Y. S.; Herziger, F.; Lupina, G.; Maultzsch, J.; Schaffus, T. et al. Understanding the growth mechanism of graphene on Ge/Si(001) surfaces. Sci. Rep. 2016, 6, 31639.

31

McElhinny, K. M.; Jacobberger, R. M.; Zaug, A. J.; Arnold, M. S.; Evans, P. G. Graphene-induced Ge (001) surface faceting. Surf. Sci. 2016, 647, 90-95.

32

Sánchez-Portal, D.; Ordejón, P.; Artacho, E.; Soler, J. M. Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 1997, 65, 453-461.

33

Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048-5079.

34

Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Ⅱ. Operators for fast iterative diagonalization. Phys. Rev. B 1991, 43, 8861-8869.

35

Artacho, E.; Sánchez-Portal, D.; Ordejón, P.; García, A.; Soler, J. M. Linear-scaling ab-initio calculations for large and complex systems. Phys. Status Solidi 1999, 215, 809-817.

36

Monkhorst, H. J.; Pack, J. D. Special points for brillouin- zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

37

Bitzek, E.; Koskinen, P.; Gähler, F.; Moseler, M.; Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 2006, 97, 170201.

38

Tersoff, J.; Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 1983, 50, 1998-2001.

39

Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

40

Zandvliet, H. J. W.; Terpstra, D.; van Silfhout, A. Reconstructions and phase transitions of the Ge(001) surface. J. Phys. : Condens. Matter 1991, 3, 409-415.

41

Zandvliet, H. J. W. The Ge(001) surface. Phys. Rep. 2003, 388, 1-40.

42

Takagi, Y.; Yoshimoto, Y.; Nakatsuji, K.; Komori, F. Local and reversible change of the reconstruction on Ge(001) surface between c(4×2) and p(2×2) by scanning tunneling microscopy. J. Phys. Soc. Japan 2003, 72, 2425-2428.

43

Yoshimoto, Y.; Nakamura, Y.; Kawai, H.; Tsukada, M.; Nakayama, M. Ge(001) surface reconstruction studied using a first-principles calculation and a monte Carlo simulation. Phys. Rev. B 2000, 61, 1965-1970.

44

Kubby, J. A.; Griffith, J. E.; Becker, R. S.; Vickers, J. S. Tunneling microscopy of Ge(001). Phys. Rev. B 1987, 36, 6079-6093.

45

de Lima, L. H.; de Siervo, A.; Landers, R.; Viana, G. A.; Goncalves, A. M. B.; Lacerda, R. G.; Häberle, P. Atomic surface structure of graphene and its buffer layer on SiC(0001): A chemical-specific photoelectron diffraction approach. Phys. Rev. B 2013, 87, 81403.

46

Schwingenschlögl, U.; Schuster, C. Electronic structure of the c(4×2) reconstructed Ge(001) surface. Chem. Phys. Lett. 2007, 449, 126-129.

47

Stroscio, J. A.; Feenstra, R. M.; Fein, A. P. Electronic structure of the Si(111)2×1 surface by scanning-tunneling microscopy. Phys. Rev. Lett. 1986, 57, 2579-2582.

48

Seo, H.; Hatch, R. C.; Ponath, P.; Choi, M.; Posadas, A. B.; Demkov, A. A. Critical differences in the surface electronic structure of Ge(001) and Si(001): Ab initio theory and angle-resolved photoemission spectroscopy. Phys. Rev. B 2014, 89, 115318.

49

Medeiros-Ribeiro, G.; Bratkovski, A. M.; Kamins, T. I.; Ohlberg, D. A. A.; Williams, R. S. Shape transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes. Science 1998, 279, 353-355.

Nano Research
Pages 3648-3661
Cite this article:
Dabrowski P, Rogala M, Pasternak I, et al. The study of the interactions between graphene and Ge(001)/Si(001). Nano Research, 2017, 10(11): 3648-3661. https://doi.org/10.1007/s12274-017-1575-6

704

Views

23

Crossref

N/A

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 02 September 2016
Revised: 28 February 2017
Accepted: 04 March 2017
Published: 06 May 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return