Journal Home > Volume 10 , Issue 11

Mesoporous g-C3N4 nanorods (NRs) are synthesized through the nano-confined thermal condensation of cyanamide in silica nanotubes (NTs) with porous shells. The gas bubbles retained during condensation and the limited cyanamide precursor inside the silica NTs lead to the formation of mesoporous g-C3N4. This nano-confined reaction is an alternative method to the traditional templating process for the synthesis of mesoporous materials. The as-prepared mesoporous g-C3N4 NRs exhibit remarkably improved photocatalytic activity and high stability in water splitting and degradation of Rhodamine B compared with bulk g-C3N4.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Confined reaction inside nanotubes: New approach to mesoporous g-C3N4 photocatalysts

Show Author's information Xueteng LiuFei PangMingyuan HeJianping Ge( )
Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular Engineering, East China Normal UniversityShanghai200062China

Abstract

Mesoporous g-C3N4 nanorods (NRs) are synthesized through the nano-confined thermal condensation of cyanamide in silica nanotubes (NTs) with porous shells. The gas bubbles retained during condensation and the limited cyanamide precursor inside the silica NTs lead to the formation of mesoporous g-C3N4. This nano-confined reaction is an alternative method to the traditional templating process for the synthesis of mesoporous materials. The as-prepared mesoporous g-C3N4 NRs exhibit remarkably improved photocatalytic activity and high stability in water splitting and degradation of Rhodamine B compared with bulk g-C3N4.

Keywords: g-C3N4, photocatalysis, mesoporous, confined reaction

References(25)

1

Maeda, K.; Domen, K. Water oxidation using a particulate BaZrO3-BaTaO2N solid-solution photocatalyst that operates under a wide range of visible light. Angew. Chem., Int. Ed. 2012, 51, 9865-9869.

2

Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387-1392.

3

Zhou, C.; Zhao, Y. F.; Shang, L.; Shi, R.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Facile synthesis of ultrathin SnNb2O6 nanosheets towards improved visible-light photocatalytic H2-production activity. Chem. Commun. 2016, 52, 8239-8242.

4

Shang, L.; Tong, B. A.; Yu, H. J.; Waterhouse, G. I. N.; Zhou, C.; Zhao, Y. F.; Tahir, M.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. CdS nanoparticle-decorated cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energ. Mater. 2016, 6, 1501241.

5

Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199-1209.

6

Cao, X. H.; Zheng, B.; Rui, X. H.; Shi, W. H.; Yan, Q. Y.; Zhang, H. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew. Chem., Int. Ed. 2014, 53, 1404-1409.

7

Pang, F.; Jiang, Y. T.; Zhang, Y. Q.; He, M. Y.; Ge, J. P. Synergetic enhancement of photocatalytic activity with a photonic crystal film as a catalyst support. J. Mater. Chem. A 2015, 3, 21439-21443.

8

Boston, D. J.; Xu, C. D.; Armstrong, D. W.; MacDonnell, F. M. Photochemical reduction of carbon dioxide to methanol and formate in a homogeneous system with pyridinium catalysts. J. Am. Chem. Soc. 2013, 135, 16252-16255.

9

Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821-831.

10

Liang, S. J.; Wen, L. R.; Lin, S.; Bi, J. H.; Feng, P. Y.; Fu, X. Z.; Wu, L. Monolayer HNb3O8 for selective photocatalytic oxidation of benzylic alcohols with visible light response. Angew. Chem., Int. Ed. 2014, 53, 2951-2955.

11

Zhao, Y. F.; Zhao, B.; Liu, J. J.; Chen, G. B.; Gao, R.; Yao, S. Y.; Li, M. Z.; Zhang, Q. H.; Gu, L.; Xie, J. L. et al. Oxide-modified nickel photocatalysts for the production of hydrocarbons in visible light. Angew. Chem., Int. Ed. 2016, 55, 4215-4219.

12

Li, M.; Guan, Y. J.; Chen, Z. W.; Gao, N.; Ren, J. S.; Dong, K.; Qu, X. G. Platinum-coordinated graphitic carbon nitride nanosheet used for targeted inhibition of amyloid β-peptide aggregation. Nano Res. 2016, 9, 2411-2423.

13

Yue, W. B.; Randorn, C.; Attidekou, P. S.; Su, Z. X.; Irvine, J. T. S.; Zhou, W. Z. Syntheses, Li insertion, and photoactivity of mesoporous crystalline TiO2. Adv. Funct. Mater. 2009, 19, 2826-2833.

14

Joo, J. B.; Zhang, Q.; Dahl, M.; Lee, I.; Goebl, J.; Zaera, F.; Yin, Y. D. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy Environ. Sci. 2012, 5, 6321-6327.

15

Li, K.; Zeng, X. Q.; Gao, S. M.; Ma, L.; Wang, Q. Y.; Xu, H.; Wang, Z. Y.; Huang, B. B.; Dai, Y.; Lu, J. Ultrasonic- assisted pyrolyzation fabrication of reduced SnO2-x/g-C3N4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation. Nano Res. 2016, 9, 1969-1982.

16

Tanaka, A.; Hashimoto, K.; Kominami, H. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. J. Am. Chem. Soc. 2012, 134, 14526-14533.

17

Wang, Z.; Hou, J. G.; Yang, C.; Jiao, S. Q.; Zhu, H. M. Three-dimensional MoS2-CdS-γ-TaON hollow composites for enhanced visible-light-driven hydrogen evolution. Chem. Commun. 2014, 50, 1731-1734.

18

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.

19

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. -M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763-4770.

20

Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452-2456.

21

Wang, X. C.; Madeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 2009, 131, 1680-1681.

22

Sun, J. H.; Zhang, J. S.; Zhang, M. W.; Antonietti, M.; Fu, X. Z.; Wang, X. C. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun. 2012, 3, 1139.

23

Zhang, J. S.; Guo, F. S.; Wang, X. C. An optimized and general synthetic strategy for fabrication of polymeric carbon nitride nanoarchitectures. Adv. Funct. Mater. 2013, 23, 3008-3014.

24

Zhang, J. S.; Zhang, M. W.; Yang, C.; Wang, X. C. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 2014, 26, 4121-4126.

25

You, L.; Wang, T. Y.; Ge, J. P. When mesoporous silica meets the alkaline polyelectrolyte: A controllable synthesis of functional and hollow nanostructures with a porous shell. Chem. — Eur. J. 2013, 19, 2142-2149.

File
nr-10-11-3638_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 February 2017
Revised: 02 March 2017
Accepted: 04 March 2017
Published: 13 June 2017
Issue date: November 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 21671067 and 21471058), the National Key Research and Development Program of China (No. 2016YFB0701103), National Program for Support of Top-notch Young Professionals and Shuguang Program (No. 15SG21).

Return