Journal Home > Volume 10 , Issue 10

This study reports on the mid-infrared (mid-IR) photothermal response of multilayer MoS2 thin films grown on crystalline (p-type silicon and c-axis-oriented single crystal sapphire) and amorphous (Si/SiO2 and Si/SiN) substrates by pulsed laser deposition (PLD). The photothermal response of the MoS2 films is measured as the changes in the resistance of the MoS2 films when irradiated with a mid-IR (7 to 8.2 μm) source. We show that enhancing the temperature coefficient of resistance (TCR) of the MoS2 thin films is possible by controlling the film-substrate interface through a proper choice of substrate and growth conditions. The thin films grown by PLD are characterized using X-ray diffraction, Raman, atomic force microscopy, X-ray photoelectron microscopy, and transmission electron microscopy. The high-resolution transmission electron microscopy (HRTEM) images show that the MoS2 films grow on sapphire substrates in a layer-by-layer manner with misfit dislocations. The layer growth morphology is disrupted when the films are grown on substrates with a diamond cubic structure (e.g., silicon) because of twin growth formation. The growth morphology on amorphous substrates, such as Si/SiO2 or Si/SiN, is very different. The PLD-grown MoS2 films on silicon show higher TCR (-2.9% K-1 at 296 K), higher mid-IR sensitivity (ΔR/R = 5.2%), and higher responsivity (8.7 V·W–1) compared to both the PLD-grown films on other substrates and the mechanically exfoliated MoS2 flakes transferred to different substrates.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Effect of interface on mid-infrared photothermal response of MoS2 thin film grown by pulsed laser deposition

Show Author's information Ankur Goswami1Priyesh Dhandaria1Soupitak Pal2Ryan McGee1Faheem Khan1Željka Antić1Ravi Gaikwad1Kovur Prashanthi1Thomas Thundat1( )
Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonT6G 1H9Canada
Department of Chemical EngineeringUniversity of CaliforniaSanta Barbara93106-5070USA

Abstract

This study reports on the mid-infrared (mid-IR) photothermal response of multilayer MoS2 thin films grown on crystalline (p-type silicon and c-axis-oriented single crystal sapphire) and amorphous (Si/SiO2 and Si/SiN) substrates by pulsed laser deposition (PLD). The photothermal response of the MoS2 films is measured as the changes in the resistance of the MoS2 films when irradiated with a mid-IR (7 to 8.2 μm) source. We show that enhancing the temperature coefficient of resistance (TCR) of the MoS2 thin films is possible by controlling the film-substrate interface through a proper choice of substrate and growth conditions. The thin films grown by PLD are characterized using X-ray diffraction, Raman, atomic force microscopy, X-ray photoelectron microscopy, and transmission electron microscopy. The high-resolution transmission electron microscopy (HRTEM) images show that the MoS2 films grow on sapphire substrates in a layer-by-layer manner with misfit dislocations. The layer growth morphology is disrupted when the films are grown on substrates with a diamond cubic structure (e.g., silicon) because of twin growth formation. The growth morphology on amorphous substrates, such as Si/SiO2 or Si/SiN, is very different. The PLD-grown MoS2 films on silicon show higher TCR (-2.9% K-1 at 296 K), higher mid-IR sensitivity (ΔR/R = 5.2%), and higher responsivity (8.7 V·W–1) compared to both the PLD-grown films on other substrates and the mechanically exfoliated MoS2 flakes transferred to different substrates.

Keywords: MoS2, interface, photothermal effect, pulsed laser deposition, infrared (IR) detector

References(61)

1

Yazyev, O. V.; Kis, A. MoS2 and semiconductors in the flatland. Mater. Today 2015, 18, 20–30.

2

Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

3

Sorkin, V.; Pan, H.; Shi, H.; Quek, S. Y.; Zhang, Y. W. Nanoscale transition metal dichalcogenides: Structures, properties, and applications. Crit. Rev. Solid State Mater. Sci. 2014, 39, 319–367.

4

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

5

Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

6

Klinovaja, J.; Loss, D. Spintronics in MoS2 monolayer quantum wires. Phys. Rev. B 2013, 88, 075404.

7

Ganatra, R.; Zhang, Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano 2014, 8, 4074–4099.

8

Serrao, C. R.; Diamond, A. M.; Hsu, S. L.; You, L.; Gadgil, S.; Clarkson, J.; Carraro, C.; Maboudian, R.; Hu, C. M.; Salahuddin, S. Highly crystalline MoS2 thin films grown by pulsed laser deposition. Appl. Phys. Lett. 2015, 106, 052101.

9

El-Mahalawy, S. H.; Evans, B. L. Temperature dependence of the electrical conductivity and hall coefficient in 2H-MoS2, MoSe2, WSe2, and MoTe2. Phys. Status Solidi B 1977, 79, 713–722.

10

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

11

Kallatt, S.; Umesh, G.; Bhat, N.; Majumdar, K. Photoresponse of atomically thin MoS2 layers and their planar heterojunctions. Nanoscale 2016, 8, 15213–15222.

12

Late, D. J.; Shaikh, P. A.; Khare, R.; Kashid, R. V.; Chaudhary, M.; More, M. A.; Ogale, S. B. Pulsed laser-deposited MoS2 thin films on W and Si: Field emission and photoresponse studies. ACS Appl. Mater. Interfaces 2014, 6, 15881–15888.

13

Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thinlayered MoS2 transistors. ACS Nano 2013, 7, 4879–4891.

14

Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

15

Zhou, Y. L.; Liu, W.; Huang, X.; Zhang, A. H.; Zhang, Y.; Wang, Z. L. Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res. 2016, 9, 800–807.

16

Zhang, L. M.; Liu, C.; Wong, A. B.; Resasco, J.; Yang, P. D. MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Res. 2015, 8, 281–287.

17

Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692–699.

18

Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575–6581.

19

Rogalski, A. HgCdTe infrared detector material: History, status and outlook. Rep. Prog. Phys. 2005, 68, 2267–2336.

20

Rogalski, A. Infrared detectors: Status and trends. Prog. Quant. Electron. 2003, 27, 59–210.

21

Eng, P.C.; Song, S.; Ping, B. State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength. Nanophotonics 2015, 4, 277–302.

22

Kumar, R. T. R.; Karunagaran, B.; Mangalaraj, D.; Narayandass, S. K.; Manoravi, P.; Joseph, M.; Gopal, V.; Madaria, R. K.; Singh, J. P. Room temperature deposited vanadium oxide thin films for uncooled infrared detectors. Mater. Res. Bull. 2003, 38, 1235–1240.

23

Liddiard, K. C. The active microbolometer: Anew concept in infrared detection. In Proc. SPIE 5274, Microelectronics: Design, Technology, and Packaging, Perth, Australia, 2004, pp 227–238.

24

Liddiard, K. C. Thin-film resistance bolometer IR detectors—Ⅱ. Infrared Phys. 1986, 26, 43–49.

25

Bae, J. J.; Yoon, J. H.; Jeong, S.; Moon, B. H.; Han, J. T.; Jeong, H. J.; Lee, G. W.; Hwang, H. R.; Lee, Y. H.; Jeong, S. Y. et al. Sensitive photo-thermal response of graphene oxide for mid-infrared detection. Nanoscale 2015, 7, 15695–15700.

26

Gowda, P.; Mohapatra, D. R.; Misra, A. Photoresponse of double-stacked graphene to Infrared radiation. Nanoscale 2015, 7, 15806–15813.

27

Sassi, U.; Parret, R.; Nanot, S.; Bruna, M.; Borini, S.; De Fazio, D.; Zhao, Z.; Lidorikis, E.; Koppens, F. H. L.; Ferrari, A. C. et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. Nat. Commun. 2017, 8, 14311.

28
Leroy, J. B. Infrared spectroscopic studies of adsorption on MoS2 and WS2: Comparison between nanoparticles and bulk materials. Master's Theses. Ball State University, Indiana, Muncie, 2011.
29

Daoudi, K.; Tsuchiya, T.; Yamaguchi, I.; Manabe, T.; Mizuta, S.; Kumagai, T. Microstructural and electrical properties of La0.7Ca0.3MnO3 thin films grown on SrTiO3 and LaAlO3 substrates using metal-organic deposition. J. Appl. Phys. 2005, 98, 013507.

30
Kern, E. L.; Cain, O. J. Molybdenum disulfide electrical resistance devices. U.S. Patent 3465278 A, Sep. 2, 1969.
31

Boyd, I. W. Thin film growth by pulsed laser deposition. Ceram. Int. 1996, 22, 429–434.

32

Chrisey, D. B.; Hubler, G. K. Pulsed Laser Deposition of Thin Films; Wiley: New York, 1994.

33

Eason, R. Pulsed Laser Deposition of Thin Films: Applications-LedGrowth of Functional Materials; Willey: New Jersey, 2007.

DOI
34

Lin, Z.; Carvalho, B. R.; Kahn, E.; Lv, R.T.; Rao, R.; Terrones, H.; Pimenta, M. A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 022002.

35

Mignuzzi, S.; Pollard, A. J.; Bonini, N.; Brennan, B.; Gilmore, I. S.; Pimenta, M. A.; Richards, D.; Roy, D. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 2015, 91, 195411.

36

Amani, M.; Chin, M. L.; Mazzoni, A. L.; Burke, R. A.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Dubey, M. Growthsubstrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors. Appl. Phys. Lett. 2014, 104, 203506.

37

Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

38

Kranthi Kumar, V.; Dhar, S.; Choudhury, T. H.; Shivashankar, S. A.; Raghavan, S. A predictive approach to CVD of crystalline layers of TMDs: The case of MoS2. Nanoscale 2015, 7, 7802–7810.

39

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

40

Huang, Y. L.; Chen, Y. F.; Zhang, W. J.; Quek, S. Y.; Chen, C. H.; Li, L. J.; Hsu, W. T.; Chang, W. H.; Zheng, Y. J.; Chen, W. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298.

41

Beyerlein, I. J.; Zhang, X. H.; Misra, A. Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 2014, 44, 329–363.

42

Takahashi, N.; Shiojiri, M. Stacking faults in hexagonal and rhombohedral MoS2 crystals produced by mechanical operation in relation to lubrication. Wear 1993, 167, 163–171.

43
Ted Pella Inc. PELCO® Sapphire Substrate Discs, Technical Information [Online]. 2014; https://www.tedpella.com/vacuum_html/Sapphire_Substrate_Discs_and_Technical_Information.htm.
44

Srivastava, J. K.; Prasad, M.; Wagner, J. B., Jr. Electrical conductivity of silicon dioxide thermally grown on silicon. J. Electrochem. Soc. 1985, 132, 955–963.

45

Piccirillo, A.; Gobbi, A. L. Physical-electrical properties of silicon nitride deposited by PECVD on Ⅰ Ⅱ-Ⅴ semiconductors J. Electrochem. Soc. 1990, 137, 3910–3917.

46

Wieting, T. J.; Verble, J. L. Infrared and raman studies of long-wavelength optical phonons in hexagonal MoS2. Phys. Rev. B 1971, 3, 4286–4292.

47

Li, W.; Birdwell, A. G.; Amani, M.; Burke, R. A.; Ling, X.; Lee, Y. H.; Liang, X. L.; Peng, L. M.; Richter, C. A.; Kong, J. et al. Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Phys. Rev. B 2014, 90, 195434.

48

Liang, H. F. Mid-infrared response of reduced graphene oxide and its high-temperature coefficient of resistance. AIP Adv. 2014, 4, 107131.

49

Prashanthi, K.; Phani, A.; Thundat, T. Photothermal electrical resonance spectroscopy of physisorbed molecules on a nanowire resonator. Nano Lett. 2015, 15, 5658–5663.

50

Shimamura, K.; Yuan, Z. S.; Shimojo, F.; Nakano, A. Effects of twins on the electronic properties of GaAs. Appl. Phys. Lett. 2013, 103, 022105.

51

Dong, H. C.; Xiao, J. W.; Melnik, R.; Wen, B. Weak phonon scattering effect of twin boundaries on thermal transmission. Sci. Rep. 2016, 6, 19575.

52

van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

53

Zhu, W. J.; Low, T.; Lee, Y. H.; Wang, H.; Farmer, D. B.; Kong, J.; Xia, F. N.; Avouris, P. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 2014, 5, 3087.

54

Yu, Z. G.; Zhang, Y. W.; Yakobson, B. I. An anomalous formation pathway for dislocation-sulfur vacancy complexes in polycrystalline monolayer MoS2. Nano Lett. 2015, 15, 6855–6861.

55

Jena, D.; Gossard, A. C.; Mishra, U. K. Dislocation scattering in a two-dimensional electron gas. Appl. Phys. Lett. 2000, 76, 1707–1709.

56

Esmaeili-Rad, M. R.; Salahuddin, S. High performance molybdenum disulfide amorphous silicon heterojunction photodetector. Sci. Rep. 2013, 3, 2345.

57

Man, M. K. L.; Deckoff-Jones, S.; Winchester, A.; Shi, G. S.; Gupta, G.; Mohite, A. D.; Kar, S.; Kioupakis, E.; Talapatra, S.; Dani, K. M. Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer. Sci. Rep. 2016, 6, 20890.

58

Schlaf, R.; Lang, O.; Pettenkofer, C.; Jaegermann, W. Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule. J. Appl. Phys. 1999, 85, 2732–2753.

59

Hao, L. Z.; Liu, Y. J.; Gao, W.; Han, Z. D.; Xue, Q. Z.; Zeng, H. Z.; Wu, Z. P.; Zhu, J.; Zhang, W. L. Electrical and photovoltaic characteristics of MoS2/Si p-n junctions. J. Appl. Phys. 2015, 117, 114502.

60

Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.

61
Datskos, P. G.; Lavrik, N. V. Detectors—figures of merit. In Encyclopedia of Optical Engineering. Driggers, R. G., Ed.; Marcel Dekker Inc. : New York, 2003; pp 349–357.
File
nr-10-10-3571_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 July 2016
Revised: 25 February 2017
Accepted: 04 March 2017
Published: 04 July 2017
Issue date: October 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the Canada Excellence Research Chair (CERC) program (No. SF0926). The authors acknowledge the characterization facilities provided by Alberta Centre for Surface Engineering & Sciences (ACSES), Oil Sands & Coal Interfacial Engineering Facility (OSCIEF) and the Nanofab at the University of Alberta. Authors also thank Mr. Richard Hull for useful discussions on noise analysis. Discussions with Dr. Naresh Miriyala regarding substrate-film interface was illuminating. Mr. Abinash Tripathy from Indian Institute of Science, Bangalore for carrying out the PL measurement and Mr. Kalvin Schofield from (CME U of A) for IV and electrical measurements were gratefully acknowledged.

Return