Journal Home > Volume 10 , Issue 10

In this paper, a floating-gate tribotronic transistor (FGTT) based on a mobile triboelectric layer and a traditional silicon-based field-effect transistor (FET) is proposed. In the FGTT, the triboelectric charges in the layer created by contact electrification can be used to modulate charge carrier transport in the transistor. Based on the FGTTs and FETs, a tribotronic negated AND (NAND) gate that achieves mechanical-electrical coupled inputs, logic operations, and electrical level outputs is fabricated. By further integrating tribotronic NAND gates with traditional digital circuits, several basic units such as the tribotronic S-R trigger, D trigger, and T trigger have been demonstrated. Additionally, tribotronic sequential logic circuits such as registers and counters have also been integrated to enable external contact triggered storage and computation. In contrast to the conventional sequential logic units controlled by electrical signals, contact-triggered tribotronic sequential logic circuits are able to realize direct interaction and integration with the external environment. This development can lead to their potential application in micro/nano-sensors, electromechanical storage, interactive control, and intelligent instrumentation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tribotronic triggers and sequential logic circuits

Show Author's information Li Min Zhang1Zhi Wei Yang1Yao Kun Pang1Tao Zhou1Chi Zhang1 ( )Zhong Lin Wang1,2( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of SciencesNational Center for Nanoscience and TechnologyBeijing100083China
School of Material Science and EngineeringGeorgia Institute of TechnologyAtlantaGA 30332-0245USA

Abstract

In this paper, a floating-gate tribotronic transistor (FGTT) based on a mobile triboelectric layer and a traditional silicon-based field-effect transistor (FET) is proposed. In the FGTT, the triboelectric charges in the layer created by contact electrification can be used to modulate charge carrier transport in the transistor. Based on the FGTTs and FETs, a tribotronic negated AND (NAND) gate that achieves mechanical-electrical coupled inputs, logic operations, and electrical level outputs is fabricated. By further integrating tribotronic NAND gates with traditional digital circuits, several basic units such as the tribotronic S-R trigger, D trigger, and T trigger have been demonstrated. Additionally, tribotronic sequential logic circuits such as registers and counters have also been integrated to enable external contact triggered storage and computation. In contrast to the conventional sequential logic units controlled by electrical signals, contact-triggered tribotronic sequential logic circuits are able to realize direct interaction and integration with the external environment. This development can lead to their potential application in micro/nano-sensors, electromechanical storage, interactive control, and intelligent instrumentation.

Keywords: triboelectric nanogenerator, tribotronics, tribotronic transistor, trigger, sequential logic circuits

References(34)

1

Lundstrom, M. Moore's law forever. Science 2003, 299, 210–211.

2

Peercy, P. S. The drive to miniaturization. Nature 2000, 406, 1023–1026.

3

Stevenson, I. H.; Kording, K. P. How advances in neural recording affect data analysis. Nat. Neurosci. 2011, 14, 139–142.

4

Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805.

5

Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of things (IoT): A vision, architectural elements, and future directions. Future Gener. Comp. Sy. 2013, 29, 1645–1660.

6

Lankhorst, M. H. R.; Ketelaars, B. W. S. M. M.; Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 2005, 4, 347–352.

7

Tsong, A. E.; Tuch, B. B.; Li, H.; Johnson, A. D. Evolution of alternative transcriptional circuits with identical logic. Nature 2006, 443, 415–420.

8

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334.

9

Pu, X.; Liu, M. M.; Li, L. X.; Zhang, C.; Pang, Y. K.; Jiang, C. Y.; Shao, L. H.; Hu, W. G.; Wang, Z. L. Efficient charging of Li-ion batteries with pulsed output current of triboelectric nanogenerators. Adv. Sci. 2016, 3, 1500255.

10

Wang, Z. L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

11

Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.

12

Zhou, T.; Zhang, C.; Han, C. B.; Fan, F. R.; Tang, W.; Wang, Z. L. Woven structured triboelectric nanogenerator for wearable devices. ACS Appl. Mater. Interfaces 2014, 6, 14695–14701.

13

Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725.

14

Han, C. B.; Du, W. M.; Zhang, C.; Tang, W.; Zhang, L. M.; Wang, Z. L. Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes. Nano Energy 2014, 6, 59–65.

15

Tang, W.; Zhang, C.; Han, C. B.; Wang, Z. L. Enhancing output power of cylindrical triboelectric nanogenerators by segmentation design and multilayer integration. Adv. Funct. Mater. 2014, 24, 6684–6690.

16

Zhou, T.; Zhang, L. M.; Xue, F.; Tang, W.; Zhang, C.; Wang, Z. L. Multilayered electret films based triboelectric nanogenerator. Nano Res. 2016, 9, 1442–1451.

17

Pang, Y. K.; Li, X. H.; Chen, M. X.; Han, C. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerators as a self-powered 3D acceleration sensor. ACS Appl. Mater. Interfaces 2015, 7, 19076–19082.

18

Li, X. H.; Han, C. B.; Jiang, T.; Zhang, C.; Wang, Z. L. A ball-bearing structured triboelectric nanogenerator for nondestructive damage and rotating speed measurement. Nanotechnology 2016, 27, 085401.

19

Jiang, T.; Zhang, L. M.; Chen, X. Y.; Han, C. B.; Tang, W.; Zhang, C.; Xu, L.; Wang, Z. L. Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano 2015, 9, 12562–12572.

20

Zhang, L. M.; Han, C. B.; Jiang, T.; Zhou, T.; Li, X. H.; Zhang, C.; Wang, Z. L. Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 2016, 22, 87–94.

21

Xu, L.; Pang, Y. K.; Zhang, C.; Jiang, T.; Chen, X. Y.; Luo, J. J.; Tang, W.; Cao, X.; Wang, Z. L. Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy 2017, 31, 351–358.

22

Zhang, C.; Tang, W.; Zhang, L. M.; Han, C. B.; Wang, Z. L. Contact electrification field-effect transistor. ACS Nano 2014, 8, 8702–8709.

23

Zhang, C.; Wang, Z. L. Tribotronics—A new field by coupling triboelectricity and semiconductor. Nano Today 2016, 11, 521–536.

24

Zhang, C.; Tang, W.; Pang, Y. K.; Han, C. B.; Wang, Z. L. Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator. Adv. Mater. 2015, 27, 719–726.

25

Xue, F.; Chen, L. B.; Wang, L. F.; Pang, Y. K.; Chen, J.; Zhang, C.; Wang, Z. L. MoS2 tribotronic transistor for smart tactile switch. Adv. Funct. Mater. 2016, 26, 2104–2109.

26

Yang, Z. W.; Pang, Y. K.; Zhang, L. M.; Lu, C. X.; Chen, J.; Zhou, T.; Zhang, C.; Wang, Z. L. Tribotronic transistor array as an active tactile sensing system. ACS Nano 2016, 10, 10912–10920.

27

Zhang, C.; Zhang, L. M.; Tang, W.; Han, C. B.; Wang, Z. L. Tribotronic logic circuits and basic operations. Adv. Mater. 2015, 27, 3533–3540.

28

Li, J.; Zhang, C.; Duan, L.; Zhang, L. M.; Wang, L. D.; Dong, G. F.; Wang, Z. L. Flexible organic tribotronic transistor memory for a visible and wearable touch monitoring system. Adv. Mater. 2016, 28, 106–110.

29

Zhang, C.; Li, J.; Han, C. B.; Zhang, L. M.; Chen, X. Y.; Wang, L. D.; Dong, G. F.; Wang, Z. L. Organic tribotronic transistor for contact-electrification-gated light-emitting diode. Adv. Funct. Mater. 2015, 25, 5625–5632.

30

Zhang, C.; Zhang, Z. H.; Yang, X.; Zhou, T.; Han, C. B.; Wang, Z. L. Tribotronic phototransistor for enhanced photodetection and hybrid energy harvesting. Adv. Funct. Mater. 2016, 26, 2554–2560.

31

Pang, Y. K.; Xue, F.; Wang, L. F.; Chen, J.; Luo, J. J.; Jiang, T.; Zhang, C.; Wang, Z. L. Tribotronic enhanced photoresponsivity of a MoS2 phototransistor. Adv. Sci. 2016, 3, 1500419.

32

Han, C. B.; Zhang, C.; Tian, J. J.; Li, X. H.; Zhang, L. M.; Li, Z.; Wang, Z. L. Triboelectrification induced UV emission from plasmon discharge. Nano Res. 2015, 8, 219–226.

33

Zhou, T.; Yang, Z. W.; Pang, Y. K.; Xu, L.; Zhang, C.; Wang, Z. L. Tribotronic tuning diode for active analog signal modulation. ACS Nano 2017, 11, 882–888.

34

Pang, Y. K.; Li, J.; Zhou, T.; Yang, Z. W.; Luo, J. J.; Zhang, L. M.; Dong, G. F.; Zhang, C.; Wang, Z. L. Flexible transparent tribotronic transistor for active modulation of conventional electronics. Nano Energy 2017, 31, 533–540.

File
nr-10-10-3534_ESM.pdf (907.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 February 2017
Revised: 23 February 2017
Accepted: 26 February 2017
Published: 14 June 2017
Issue date: October 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

The authors thank the support of National Natural Science Foundation of China (Nos. 51475099 and 51432005), Beijing Natural Science Foundation (No. 4163077), Beijing Nova Program (No. Z171100001117054), the Youth Innovation Promotion Association, CAS (No. 2014033), the "thousands talents" program for the pioneer researcher and his innovation team, China, and National Key Research and Development Program of China (No.2016YFA0202704).

Return