Journal Home > Volume 10 , Issue 10

The activity and durability of electrocatalysts are important factors in their practical applications, such as electrocatalytic oxygen evolution reactions (OERs) used in water splitting cells and metal–air batteries. In this study, a novel electrocatalyst, comprising few-layered graphitic carbon (~5 atomic layers) encapsulated heazlewoodite (Ni3S2@C) nanoparticles (NPs), was designed and synthesized using a one-step solid phase pyrolysis method. In the OER test, the Ni3S2@C catalyst exhibited an overpotential of 298 mV at a current density of 10 mA·cm–2, a Tafel slope of 51.3 mV·dec–1, and charge transfer resistance of 22.0 Ω, which were better than those of benchmark RuO2 and most nickel-sulfide-based catalysts previously reported. This improved performance was ascribed to the high electronic conductivity of the graphitic carbon encapsulating layers. Moreover, the encapsulation of graphitic carbon layers provided superb stability without noticeable oxidation or depletion of Ni3S2 NPs within the nanocomposite. Therefore, the strategy introduced in this work can benefit the development of highly stable metal sulfide electrocatalysts for energy conversion and storage applications, without sacrificing electrocatalytic activity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Show Author's information Mohammad Al-Mamun1Huajie Yin1Porun Liu1Xintai Su1,2Haimin Zhang3Huagui Yang1Dan Wang1Zhiyong Tang1Yun Wang1( )Huijun Zhao1,3( )
Centre for Clean Environment and EnergyGriffith UniversityGold Coast Campus QLD4222Australia
Ministry Key Laboratory of Oil and Gas Fine Chemicals, College of Chemistry and Chemical EngineeringXinjiang UniversityUrumqi830046China
Centre for Environmental and Energy Nanomaterials, Institute of Solid State PhysicsChinese Academy of SciencesHefei230031China

Abstract

The activity and durability of electrocatalysts are important factors in their practical applications, such as electrocatalytic oxygen evolution reactions (OERs) used in water splitting cells and metal–air batteries. In this study, a novel electrocatalyst, comprising few-layered graphitic carbon (~5 atomic layers) encapsulated heazlewoodite (Ni3S2@C) nanoparticles (NPs), was designed and synthesized using a one-step solid phase pyrolysis method. In the OER test, the Ni3S2@C catalyst exhibited an overpotential of 298 mV at a current density of 10 mA·cm–2, a Tafel slope of 51.3 mV·dec–1, and charge transfer resistance of 22.0 Ω, which were better than those of benchmark RuO2 and most nickel-sulfide-based catalysts previously reported. This improved performance was ascribed to the high electronic conductivity of the graphitic carbon encapsulating layers. Moreover, the encapsulation of graphitic carbon layers provided superb stability without noticeable oxidation or depletion of Ni3S2 NPs within the nanocomposite. Therefore, the strategy introduced in this work can benefit the development of highly stable metal sulfide electrocatalysts for energy conversion and storage applications, without sacrificing electrocatalytic activity.

Keywords: pyrolysis, encapsulation, electrocatalyst, oxygen evolution reaction, graphitic carbon, heazlewoodite

References(63)

1

Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.

2

Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

3

Freunberger, S. A. Batteries: Charging ahead rationally. Nat. Energy 2016, 1, 16074.

4

Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem 2010, 2, 724–761.

5

Matsumoto, Y.; Sato, E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 1986, 14, 397–426.

6

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

7

Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solidsolution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815–3822.

8

Li, H.; Shao, Y. D.; Su, Y. T.; Gao, Y. H.; Wang, X. W. Vapor-phase atomic layer deposition of nickel sulfide and its application for efficient oxygen-evolution electrocatalysis. Chem. Mater. 2016, 28, 1155–1164.

9

Yang, J.; Zhu, G. X.; Liu, Y. J.; Xia, J. X.; Ji, Z. Y.; Shen, X. P.; Wu, S. K. Fe3O4-decorated Co9S8 nanoparticles in situ grown on reduced graphene oxide: A new and efficient electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 4712–4721.

10

Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320–1326.

11

Falkowski, J. M.; Concannon, N. M.; Yan, B.; Surendranath, Y. Heazlewoodite, Ni3S2: A potent catalyst for oxygen reduction to water under benign conditions. J. Am. Chem. Soc. 2015, 137, 7978–7981.

12

Li, J. J.; Shen, P. K.; Tian, Z. Q. One-step synthesis of Ni3S2 nanowires at low temperature as efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 2017, 42, 7136–7142.

13

Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

14

Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. J.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.

15

Shang, X.; Li, X.; Hu, W. H.; Dong, B.; Liu, Y. R.; Han, G. Q.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. In situ growth of NixSy controlled by surface treatment of nickel foam as efficient electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 2016, 378, 15–21.

16

Wu, Y. Y.; Li, G. D.; Liu, Y. P.; Yang, L.; Lian, X. R.; Asefa, T.; Zou, X. X. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 2016, 26, 4839–4847.

17

Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.

18

Chen, W.; Wang, H. T.; Li, Y. Z.; Liu, Y. Y.; Sun, J.; Lee, S.; Lee, J. S.; Cui, Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Cent. Sci. 2015, 1, 244–251.

19

Mabayoje, O.; Shoola, A.; Wygant, B. R.; Mullins, C. B. The role of anions in metal chalcogenide oxygen evolution catalysis: Electrodeposited thin films of nickel sulfide as "pre-catalysts". ACS Energy Lett. 2016, 1, 195–201.

20

Liu, T. T.; Liang, Y. H.; Liu, Q.; Sun, X. P.; He, Y. Q.; Asiri, A. M. Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochem. Commun. 2015, 60, 92–96.

21

Liu, X.; You, B.; Yu, X. Y.; Chipman, J.; Sun, Y. J. Electrochemical oxidation to construct a nickel sulfide/oxide heterostructure with improvement of capacitance. J. Mater. Chem. A 2016, 4, 11611–11615.

22

Lou, X. W.; Li, C. M.; Archer, L. A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 2009, 21, 2536–2539.

23

Zhu, C. Y.; Xu, F.; Chen, J.; Min, H. H.; Dong, H.; Tong, L.; Qasim, K.; Li, S. L.; Sun, L. T. Nitrogen-doped carbon onions encapsulating metal alloys as efficient and stable catalysts for dye-sensitized solar cells. J. Power Sources 2016, 303, 159–167.

24

Bi, E. B.; Chen, H.; Yang, X. D.; Peng, W. Q.; Grätzel, M.; Han, L. Y. A quasi core–shell nitrogen-doped graphene/cobalt sulfide conductive catalyst for highly efficient dye-sensitized solar cells. Energy Environ. Sci. 2014, 7, 2637–2641.

25

Feng, L. L.; Li, G. D.; Liu, Y. P.; Wu, Y. Y.; Chen, H.; Wang, Y.; Zou, Y. C.; Wang, D. J.; Zou, X. X. Carbonarmored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 980–988.

26

Zhou, Y. S.; Jin, P.; Zhou, Y. T. Synthesis of carbonencapsulated cobalt sulfide nanoparticles and their electrochemical property. Ionics 2016, 22, 2239–2243.

27

Lou, P. L.; Tan, Y. B.; Lu, P.; Cui, Z. H.; Guo, X. X. Novel one-step gas-phase reaction synthesis of transition metal sulfide nanoparticles embedded in carbon matrices for reversible lithium storage. J. Mater. Chem. A 2016, 4, 16849–16855.

28

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

29

Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100–2104.

30

Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

31

Tavakkoli, M.; Kallio, T.; Reynaud, O.; Nasibulin, A. G.; Johans, C.; Sainio, J.; Jiang, H.; Kauppinen, E. I.; Laasonen, K. Single-shell carbon-encapsulated iron nanoparticles: Synthesis and high electrocatalytic activity for hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 4535–4538.

32

Taubert, S.; Laasonen, K. The molecular and magnetic structure of carbon-enclosed and partially covered Fe55 particles. Phys. Chem. Chem. Phys. 2014, 16, 3648–3660.

33

Liu, Y. Y.; Jiang, H. L.; Zhu, Y. H.; Yang, X. L.; Li, C. Z. Transition metals (Fe, Co, and Ni) encapsulated in nitrogendoped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. J. Mater. Chem. A 2016, 4, 1694–1701.

34

Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129.

35

Burschka, J.; Brault, V.; Ahmad, S.; Breau, L.; Nazeeruddin, M. K.; Marsan, B.; Zakeeruddin, S. M.; Gratzel, M. Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energy Environ. Sci. 2012, 5, 6089–6097.

36

Lin, H. L.; Liu, F.; Wang, X. J.; Ai, Y. N.; Yao, Z. Q.; Chu, L.; Han, S.; Zhuang, X. D. Graphene-coupled flowerlike Ni3S2 for a free-standing 3D aerogel with an ultra-high electrochemical capacity. Electrochim. Acta 2016, 191, 705–715.

37

Jang, B.; Park, M.; Chae, O. B.; Park, S.; Kim, Y.; Oh, S. M.; Piao, Y. Z.; Hyeon, T. Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. J. Am. Chem. Soc. 2012, 134, 15010–15015.

38

Al-Mamun, M.; Zhu, Z. J.; Yin, H. J.; Su, X. T.; Zhang, H. M.; Liu, P. R.; Yang, H. G.; Wang, D.; Tang, Z. Y.; Wang, Y. et al. The surface sulfur doping induced enhanced performance of cobalt catalysts in oxygen evolution reactions. Chem. Commun. 2016, 52, 9450–9453.

39

Al-Mamun, M.; Su, X. T.; Zhang, H. M.; Yin, H. J.; Liu, P. R.; Yang, H. G.; Wang, D.; Tang, Z. Y.; Wang, Y.; Zhao, H. J. Strongly coupled CoCr2O4/carbon nanosheets as high performance electrocatalysts for oxygen evolution reaction. Small 2016, 12, 2866–2871.

40

Cheng, Z.; Abernathy, H.; Liu, M. L. Raman spectroscopy of nickel sulfide Ni3S2. J. Phys. Chem. C 2007, 111, 17997–18000.

41

Zhu, J. L.; Li, Y. Y.; Kang, S.; Wei, X. L.; Shen, P. K. One-step synthesis of Ni3S2 nanoparticles wrapped with in situ generated nitrogen-self-doped graphene sheets with highly improved electrochemical properties in Li-ion batteries. J. Mater. Chem. A 2014, 2, 3142–3147.

42

Haslam, G. E.; Chin, X. Y.; Burstein, G. T. Passivity and electrocatalysis of nanostructured nickel encapsulated in carbon. Phys. Chem. Chem. Phys. 2011, 13, 12968–12974.

43

Gao, S.; Liu, Y. P.; Li, G. D.; Guo, Y. C.; Zou, Y. C.; Zou, X. X. General urea-assisted synthesis of carbon-coated metal phosphide nanoparticles for efficient hydrogen evolution electrocatalysis. Electrochim. Acta 2016, 199, 99–107.

44

Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.

45

Zhu, T.; Zhu, L. L.; Wang, J.; Ho, G. W. In situ chemical etching of tunable 3D Ni3S2 superstructures for bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2016, 4, 13916–13922.

46

Buckley, A. N.; Woods, R. Electrochemical and XPS studies of the surface oxidation of synthetic heazlewoodite (Ni3S2). J. Appl. Electrochem. 1991, 21, 575–582.

47

Al-Mamun, M.; Zhang, H. M.; Liu, P. R.; Wang, Y.; Cao, J.; Zhao, H. J. Directly hydrothermal growth of ultrathin MoS2 nanostructured films as high performance counter electrodes for dye-sensitised solar cells. RSC Adv. 2014, 4, 21277–21283.

48

Wang, Q.; Gao, R.; Li, J. H. Porous, self-supported Ni3S2/Ni nanoarchitectured electrode operating through efficient lithium-driven conversion reactions. Appl. Phys. Lett. 2007, 90, 143107.

49

Tan, Z. J.; Liu, P. R.; Zhang, H. M.; Wang, Y.; Al-Mamun, M.; Yang, H. G.; Wang, D.; Tang, Z. Y.; Zhao, H. J. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface. Chem. Commun. 2015, 51, 5695–5697.

50

Al-Mamun, M.; Wang, Y.; Liu, P. R.; Zhong, Y. L.; Yin, H. J.; Su, X. T.; Zhang, H. M.; Yang, H. G.; Wang, D.; Tang, Z. Y. et al. One-step solid phase synthesis of a highly efficient and robust cobalt pentlandite electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 18314–18321.

51

Yang, N.; Tang, C.; Wang, K. Y.; Du, G.; Asiri, A. M.; Sun, X. P. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Res. 2016, 9, 3346–3354.

52

He, C. N.; Wu, S.; Zhao, N. Q.; Shi, C. S.; Liu, E. Z.; Li, J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459–4469.

53

Li, Y. B.; Zhang, H. M.; Wang, Y.; Liu, P. R.; Yang, H. G.; Yao, X. D.; Wang, D.; Tang, Z. Y.; Zhao, H. J. A self-sponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts. Energy Environ. Sci. 2014, 7, 3720–3726.

54

Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S. E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J. H. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 2010, 10, 490–493.

55

Homma, Y.; Kobayashi, Y.; Ogino, T.; Takagi, D.; Ito, R.; Jung, Y. J.; Ajayan, P. M. Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J. Phys. Chem. B 2003, 107, 12161–12164.

56

Moisala, A.; Nasibulin, A. G.; Kauppinen, E. I. The role of metal nanoparticles in the catalytic production of singlewalled carbon nanotubes—A review. J. Phys. : Condens. Matter 2003, 15, S3011.

57

Yokoyama, H.; Numakura, H.; Koiwa, M. The solubility and diffusion of carbon in palladium. Acta Mater. 1998, 46, 2823–2830.

58

Fu, W.; Du, F. H.; Su, J.; Li, X. H.; Wei, X.; Ye, T. N.; Wang, K. X.; Chen, J. S. In situ catalytic growth of largearea multilayered graphene/MoS2 heterostructures. Sci. Rep. 2014, 4, 4673.

59

Chou, S. W.; Lin, J. Y. Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for highperformance supercapacitors. J. Electrochem. Soc. 2013, 160, D178–D182.

60

Xing, Z. C.; Chu, Q. X.; Ren, X. B.; Ge, C. J.; Qusti, A. H.; Asiri, A. M.; Al Youbi, A. O.; Sun, X. P. Ni3S2 coated ZnO array for high-performance supercapacitors. J. Power Sources 2014, 245, 463–467.

61

Yang, Y.; Lun, Z. Y.; Xia, G. L.; Zheng, F. C.; He, M. N.; Chen, Q. W. Non-precious alloy encapsulated in nitrogendoped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ. Sci. 2015, 8, 3563–3571.

62

Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515–2525.

63

Gao, M. R.; Sheng, W. C.; Zhuang, Z. B.; Fang, Q. R.; Gu, S.; Jiang, J.; Yan, Y. S. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077–7084.

File
nr-10-10-3522_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 January 2017
Revised: 23 February 2017
Accepted: 26 February 2017
Published: 08 June 2017
Issue date: October 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was financially supported by Australian Research Council (ARC) Discovery Project and the National Natural Science Foundation of China (Nos. 51372248 and 51432009).

Return