Journal Home > Volume 10 , Issue 10

AgNO3 is often used in the preparation of Au nanostructures since Ag-based substances (AgBS) can selectively be adsorbed on Au(100) and significantly modulate the growth of Au nanocrystals. High-index-faceted Au nanostructures have demonstrated excellent performance in catalysis and surface enhanced Raman scattering (SERS), thus attracting the interest of many researchers in the past several decades. Herein, high-index-faceted Pd@Au concave nanocubes (CNCs) were prepared using AgBS as growth-directing agents in the heterogeneous growth of Au on Pd nanocubes (NCs). During the growth of Pd@Au CNCs, Au atoms are initially deposited on the Pd{100} facets leading to the formation of thin Au shells, and then AgBS are quickly adsorbed on the formed Au(100), favoring the growth along <111> and the formation of Pd@Au CNCs. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), high angle annular dark field (HAADF), and scanning transmission electron microscopy EDS (STEM- EDS) were used to systematically investigate the growth of Pd@Au CNCs. We also demonstrated that the high-index-faceted Pd@Au CNCs exhibited excellent SERS performances.


menu
Abstract
Full text
Outline
About this article

Ag+-assisted heterogeneous growth of concave Pd@Au nanocubes for surface enhanced Raman scattering (SERS)

Show Author's information Bo Jiang1,2,§Li Xu2,§Wei Chen2Chao Zou2Yun Yang2( )Yunzhi Fu1( )Shaoming Huang2( )
College of Materials and Chemical Engineering Hainan UniversityHaikou 570228 China
Nanomaterials and Chemistry Key Laboratory Wenzhou UniversityWenzhou 325027 China

§ Bo Jiang and Li Xu contributed equally to this work.

Abstract

AgNO3 is often used in the preparation of Au nanostructures since Ag-based substances (AgBS) can selectively be adsorbed on Au(100) and significantly modulate the growth of Au nanocrystals. High-index-faceted Au nanostructures have demonstrated excellent performance in catalysis and surface enhanced Raman scattering (SERS), thus attracting the interest of many researchers in the past several decades. Herein, high-index-faceted Pd@Au concave nanocubes (CNCs) were prepared using AgBS as growth-directing agents in the heterogeneous growth of Au on Pd nanocubes (NCs). During the growth of Pd@Au CNCs, Au atoms are initially deposited on the Pd{100} facets leading to the formation of thin Au shells, and then AgBS are quickly adsorbed on the formed Au(100), favoring the growth along <111> and the formation of Pd@Au CNCs. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), high angle annular dark field (HAADF), and scanning transmission electron microscopy EDS (STEM- EDS) were used to systematically investigate the growth of Pd@Au CNCs. We also demonstrated that the high-index-faceted Pd@Au CNCs exhibited excellent SERS performances.

Keywords: nanocube, concave, seeded growth, heterogeneous growth

References(74)

1

Du, X. J.; Fu, N. H.; Zhang, S. L.; Chen, C.; Wang, D. S.; Li, Y. D. Au/CuSiO3 nanotubes: High-performance robust catalysts for selective oxidation of ethanol to acetaldehyde. Nano Res. 2016, 9, 2681–2686.

2

Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid- phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

3

Pang, B.; Zhao, Y. F.; Luehmann, H.; Yang, X.; Detering, L.; You, M.; Zhang, C.; Zhang, L.; Li, Z. Y.; Ren, Q. S. et al. 64Cu-doped PdCu@Au tripods: A multifunctional nanomaterial for positron emission tomography and image-guided photothermal cancer treatment. ACS Nano 2016, 10, 3121–3131.

4

Mayer, M.; Scarabelli, L.; March, K.; Altantzis, T.; Tebbe, M.; Kociak, M.; Bals, S.; García de Abajo, F. J.; Fery, A.; Liz-Marzán, L. M. Controlled living nanowire growth: Precise control over the morphology and optical properties of AgAuAg bimetallic nanowires. Nano Lett. 2015, 15, 5427–5437.

5

Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. D. Au–ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 5660–5663.

6

Tsao, Y. C.; Rej, S.; Chiu, C. Y.; Huang, M. H. Aqueous phase synthesis of Au–Ag core–shell nanocrystals with tunable shapes and their optical and catalytic properties. J. Am. Chem. Soc. 2014, 136, 396–404.

7

Bian, T.; Zhang, H.; Jiang, Y. Y.; Jin, C. H.; Wu, J. B.; Yang, H.; Yang, D. R. Epitaxial growth of twinned Au–Pt core–Shell star-shaped decahedra as highly durable electro­catalysts. Nano Lett. 2015, 15, 7808–7815.

8

Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012, 7, 448–466.

9

Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Sun, Y. G.; Yin, Y. D. Tailored synthesis of superparamagnetic gold nanoshells with tunable optical properties. Adv. Mater. 2010, 22, 1905–1909.

10

Wang, F.; Li, C. H.; Sun, L. D.; Wu, H. S.; Ming, T.; Wang, J. F.; Yu, J. C.; Yan, C. H. Heteroepitaxial growth of high- index-faceted palladium nanoshells and their catalytic performance. J. Am. Chem. Soc. 2011, 133, 1106–1111.

11

Zhang, Q. F.; Han, L. L.; Jing, H.; Blom, D. A.; Lin, Y.; Xin, H. L.; Wang, H. Facet control of gold nanorods. ACS Nano 2016, 10, 2960–2974.

12

Wang, Z. N.; Yang, G.; Zhang, Z. R.; Jin, M. S.; Yin, Y. D. Selectivity on etching: Creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction. ACS Nano 2016, 10, 4559–4564.

13

Yang, C. W.; Chanda, K.; Lin, P. H.; Wang, Y. N.; Liao, C. W.; Huang, M. H. Fabrication of Au–Pd core–shell heterostructures with systematic shape evolution using octahedral nanocrystal cores and their catalytic activity. J. Am. Chem. Soc. 2011, 133, 19993–20000.

14

Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium–platinum core–shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.

15

Niu, W. X.; Chua, Y. A. A.; Zhang, W. Q.; Huang, H. J.; Lu, X. M. Highly symmetric gold nanostars: Crystallographic control and surface-enhanced Raman scattering property. J. Am. Chem. Soc. 2015, 137, 10460–10463.

16

Wu, B. H.; Zheng, N. F. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 2013, 8, 168–197.

17

Zhang, L.; Niu, W. X.; Gao, W. Y.; Majeed, S.; Liu, Z. Y.; Zhao, J. M.; Anjum, S.; Xu, G. B. Synthesis and elec­trocatalytic properties of tetrahexahedral, polyhedral, and branched Pd@Au core–shell nanocrystals. Chem. Commun. 2013, 49, 8836–8838.

18

Zheng, Z. K.; Tachikawa, T.; Majima, T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level. J. Am. Chem. Soc. 2015, 137, 948–957.

19

Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 2011, 133, 6078–6089.

20

Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.

21

Yu, Y.; Zhang, Q. B.; Yao, Q. F.; Xie, J. P.; Lee, J. Y. Architectural design of heterogeneous metallic nanocrystals- principles and processes. Acc. Chem. Res. 2014, 47, 3530–3540.

22

Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.

23

Hu, Y. X.; Liu, Y. Z.; Li, Z.; Sun, Y. G. Highly asymmetric, interfaced dimers made of Au nanoparticles and bimetallic nanoshells: Synthesis and photo-enhanced catalysis. Adv. Funct. Mater. 2014, 24, 2828–2836.

24

Chen, W.; Yu, R.; Li, L. L.; Wang, A. N.; Peng, Q.; Li, Y. D. A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew. Chem., Int. Ed. 2010, 49, 2917–2921.

25

Wang, Z. N.; Chen, Z. Z.; Zhang, H.; Zhang, Z. R.; Wu, H. J.; Jin, M. S.; Wu, C.; Yang, D. R.; Yin, Y. D. Lattice- mismatch-induced twinning for seeded growth of anisotropic nanostructures. ACS Nano 2015, 9, 3307–3313.

26

Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.

27

Ruan, L. Y.; Ramezani Dakhel, H.; Lee, C.; Li, Y. J.; Duan, X. F.; Heinz, H.; Huang, Y. A rational biomimetic approach to structure defect generation in colloidal nanocrystals. ACS Nano 2014, 8, 6934–6944.

28

Shi, Q. R.; Zhang, P. N.; Li, Y. J.; Xia, H. B.; Wang, D. Y.; Tao, X. T. Synthesis of open-mouthed, yolk–shell Au@AgPd nanoparticles with access to interior surfaces for enhanced electrocatalysis. Chem. Sci. 2015, 6, 4350–4357.

29

Jang, H. J.; Ham, S.; Jr Acapulco, J. A.; Song, Y.; Hong, S.; Shuford, K. L.; Park, S. Fabrication of 2D Au nanorings with Pt framework. J. Am. Chem. Soc. 2014, 136, 17674–17680.

30

Kang, S. W.; Lee, Y. W.; Park, Y.; Choi, B. S.; Hong, J. W.; Park, K. H.; Han, S. W. One-pot synthesis of trimetallic Au@PdPt core–shell nanoparticles with high catalytic per­formance. ACS Nano 2013, 7, 7945–7955.

31

Ye, X. C.; Gao, Y. Z.; Chen, J.; Reifsnyder, D. C.; Zheng, C.; Murray, C. B. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett. 2013, 13, 2163–2171.

32

Personick, M. L.; Mirkin, C. A. Making sense of the mayhem behind shape control in the synthesis of gold nano­particles. J. Am. Chem. Soc. 2013, 135, 18238–18247.

33

Luo, M.; Ruditskiy, A.; Peng, H. C.; Tao, J.; Figueroa Cosme, L.; He, Z. K.; Xia, Y. N. Penta-twinned copper nanorods: Facile synthesis via seed-mediated growth and their tunable plasmonic properties. Adv. Funct. Mater. 2016, 26, 1209–1216.

34

Zhang, Q. F.; Zhou, Y. D.; Villarreal, E.; Lin, Y.; Zou, S. L.; Wang, H. Faceted gold nanorods: Nanocuboids, convex nanocuboids, and concave nanocuboids. Nano Lett. 2015, 15, 4161–4169.

35

Gilroy, K. D.; Hughes, R. A.; Neretina, S. Kinetically controlled nucleation of silver on surfactant-free gold seeds. J. Am. Chem. Soc. 2014, 136, 15337–15345.

36

Feng, Y. H.; Wang, Y. W.; He, J. T.; Song, X. H.; Tay, Y. Y.; Hng, H. H.; Ling, X. Y.; Chen, H. Y. Achieving site- specificity in multistep colloidal synthesis. J. Am. Chem. Soc. 2015, 137, 7624–7627.

37

Lee, J. H.; Gibson, K. J.; Chen, G.; Weizmann, Y. Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals. Nat. Commun. 2015, 6, 7571.

38

DeSantis, C. J.; Peverly, A. A.; Peters, D. G.; Skrabalak, S. E. Octopods versus concave nanocrystals: Control of morphology by manipulating the kinetics of seeded growth via co-reduction. Nano Lett. 2011, 11, 2164–2168.

39

Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.

40

Zhang, L.; Zhang, J. W.; Kuang, Q.; Xie, S. F.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Cu2+-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114–17117.

41

Garg, N.; Scholl, C.; Mohanty, A.; Jin, R. C. The role of bromide ions in seeding growth of Au nanorods. Langmuir 2010, 26, 10271–10276.

42

Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389–1393.

DOI
43

Li, X. L.; Yang, Y.; Zhou, G. J.; Han, S. H.; Wang, W. F.; Zhang, L. J.; Chen, W.; Zou, C.; Huang, S. M. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance. Nanoscale 2013, 5, 4976–4985.

44

Fang, C. H.; Zhao, G. L.; Xiao, Y. L.; Zhao, J.; Zhang, Z. J.; Geng, B. Y. Facile growth of high-yield gold nanobipyramids induced by chloroplatinic acid for high refractive index sensing properties. Sci. Rep. 2016, 6, 36706.

45

Kou, X. S.; Ni, W. H.; Tsung, C. K.; Chan, K.; Lin, H. Q.; Stucky, G. D.; Wang, J. F. Growth of gold bipyramids with improved yield and their curvature-directed oxidation. Small 2007, 3, 2103–2113.

46

Sau, T. K.; Rogach, A. L. Nonspherical noble metal nano­particles: Colloid-chemical synthesis and morphology control. Adv. Mater. 2010, 22, 1781–1804.

47

Zhang, X.; Tsuji, M.; Lim, S.; Miyamae, N.; Nishio, M.; Hikino, S.; Umezu, M. Synthesis and growth mechanism of pentagonal bipyramid-shaped gold-rich Au/Ag alloy nanoparticles. Langmuir 2007, 23, 6372–6376.

48

Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. D. Platonic gold nanocrystals. Angew. Chem. 2004, 116, 3759–3763.

49

Seo, D.; Park, J. C.; Song, H. Polyhedral gold nanocrystals with Oh symmetry: From octahedra to cubes. J. Am. Chem. Soc. 2006, 128, 14863−14870.

50

Tran, T. T.; Lu, X. M. Synergistic effect of Ag and Pd ions on shape-selective growth of polyhedral Au nanocrystals with high-index facets. J. Phys. Chem. C 2011, 115, 3638–3645.

51

Luo, M.; Huang, H. W.; Choi, S. I.; Zhang, C.; da Silva, R. R.; Peng, H. C.; Li, Z. Y.; Liu, J. Y.; He, Z. K.; Xia, Y. N. Facile synthesis of Ag nanorods with no plasmon resonance peak in the visible region by using Pd decahedra of 16 nm in size as seeds. ACS Nano 2015, 9, 10523–10532.

52

Yu, Y.; Zhang, Q. B.; Xie, J. P.; Lee, J. Y. Engineering the architectural diversity of heterogeneous metallic nanocrystals. Nat. Commun. 2013, 4, 1454.

53

Xie, S. F.; Peng, H. C.; Lu, N.; Wang, J. G.; Kim, M. J.; Xie, Z. X.; Xia, Y. N. Confining the nucleation and overgrowth of Rh to the {111} facets of Pd nanocrystal seeds: The roles of capping agent and surface diffusion. J. Am. Chem. Soc. 2013, 135, 16658–16667.

54

DeSantis, C. J.; Skrabalak, S. E. Core values: Elucidating the role of seed structure in the synthesis of symmetrically branched nanocrystals. J. Am. Chem. Soc. 2013, 135, 10–13.

55

Wang, F.; Sun, L. D.; Feng, W.; Chen, H. J.; Yeung, M. H.; Wang, J. F.; Yan, C. H. Heteroepitaxial growth of core–shell and core-multishell nanocrystals composed of palladium and gold. Small 2010, 6, 2566–2575.

56

Xu, L.; Wang, K.; Jiang, B.; Chen, W.; Liu, F. Y.; Hao, H.; Zou, C.; Yang, Y.; Huang, S. M. Competitive effect in the growth of Pd–Au–Pd segmental nanorods. Chem. Mater. 2016, 28, 7394–7403.

57

Liu, M. Z.; Guyot Sionnest, P. Mechanism of silver(Ⅰ)- assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 2005, 109, 22192–22200.

58

Zheng, Y. Q.; Tao, J.; Liu, H. Y.; Zeng, J.; Yu, T.; Ma, Y. Y.; Moran, C.; Wu, L. J.; Zhu, Y. M.; Liu, J. Y. et al. Facile synthesis of gold nanorice enclosed by high-index facets and its application for CO oxidation. Small 2011, 7, 2307–2312.

59

Yu, Y.; Zhang, Q. B.; Yao, Q. F.; Xie, J. P.; Lee, J. Y. Guiding principles in the galvanic replacement reaction of an underpotentially deposited metal layer for site-selective deposition and shape and size control of satellite nano­crystals. Chem. Mater. 2013, 25, 4746–4756.

60

Herrero, E.; Buller, L. J.; Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 2001, 101, 1897–7930.

61

Zhou, G. J.; Yang, Y.; Han, S. H.; Chen, W.; Fu, Y. Z.; Zou, C.; Zhang, L. J.; Huang, S. M. Growth of nanobipyramid by using large sized Au decahedra as seeds. ACS Appl. Mater. Interfaces 2013, 5, 13340–13352.

62

Seo, D.; Park, J. H.; Jung, J.; Park, S. M.; Ryu, S.; Kwak, J.; Song, H. One-dimensional gold nanostructures through directed anisotropic overgrowth from gold decahedrons. J. Phys. Chem. C 2009, 113, 3449–3454.

63

Zhang, L.; Niu, W. X.; Zhao, J. M.; Zhu, S. Y.; Yuan, Y. L.; Yuan, T.; Hu, L. Z.; Xu, G. B. Pd@Au core–shell nanocrystals with concave cubic shapes: Kinetically controlled synthesis and electrocatalytic properties. Faraday Discuss. 2013, 164, 175–188.

64

Zhang, L.; Niu, W. X.; Gao, W. Y.; Qi, L. M.; Lai, J. P.; Zhao, J. M.; Xu, G. B. Synthesis of convex hexoctahedral palladium@gold core–shell nanocrystals with {431} high- index facets with remarkable electrochemiluminescence activities. ACS Nano 2014, 8, 5953–5958.

65

Yin, Y. D.; Erdonmez, C.; Aloni, S.; Alivisatos, A. P. Faceting of nanocrystals during chemical transformation: From solid silver spheres to hollow gold octahedra. J. Am. Chem. Soc. 2006, 128, 12671–12673.

66

DuChene, J. S.; Niu, W. X.; Abendroth, J. M.; Sun, Q.; Zhao, W. B.; Huo, F. W.; Wei, W. D. Halide anions as shape- directing agents for obtaining high-quality anisotropic gold nanostructures. Chem. Mater. 2013, 25, 1392–1399.

67

Zhang, L.; Niu, W. X.; Li, Z. Y.; Xu, G. B. Facile synthesis and electrochemiluminescence application of concave trisoc­tahedral Pd@Au core–shell nanocrystals bound by {331} high-index facets. Chem. Commun. 2011, 47, 10353–10355.

68

Wang, A. N.; Peng, Q.; Li, Y. D. Rod-shaped Au–Pd core–shell nanostructures. Chem. Mater. 2011, 23, 3217–3222.

69

Zhu, C.; Zeng, J.; Tao, J.; Johnson, M. C.; Schmidt Krey, I.; Blubaugh, L.; Zhu, Y. M.; Gu, Z. Z.; Xia, Y. N. Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: From hybrid dimers to nonconcentric and concentric bimetallic nanocrystals. J. Am. Chem. Soc. 2012, 134, 15822–15831.

70

Liu, M. C.; Gilroy, K. D.; Peng, H. C.; Chi, M.; Guo, L. J.; Xia, Y. N. The effect of surface capping on the diffusion of adatoms in the synthesis of Pd@Au core–shell nanocrystals. Chem. Commun. 2016, 52, 13159–13162.

71

Li, J.; Zheng, Y. Q.; Zeng, J.; Xia, Y. N. Controlling the size and morphology of Au@Pd core–shell nanocrystals by manipulating the kinetics of seeded growth. Chem. —Eur. J. 2012, 18, 8150–8156.

72

Hong, J. W.; Lee, S. U.; Lee, Y. W.; Han, S. W. Hexoctahedral Au nanocrystals with high-index facets and their optical and surface-enhanced Raman scattering properties. J. Am. Chem. Soc. 2012, 134, 4565–4568.

73

Song, Y. H.; Miao, T. T.; Zhang, P. N.; Bi, C. X.; Xia, H. B.; Wang, D. Y.; Tao, X. T. {331}-faceted trisoctahedral gold nanocrystals: Synthesis, superior electrocatalytic performance and highly efficient SERS activity. Nanoscale 2015, 7, 8405–8415.

74

Meng, M.; Fang, Z. C.; Zhang, C.; Su, H. Y.; He, R.; Zhang, R. P.; Li, H. L.; Li, Z. Y.; Wu, X. J.; Ma, C. et al. Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core–shell planar tetrapods with size-dependent optical properties. Nano Lett. 2016, 16, 3036–3041.

Publication history
Copyright
Acknowledgements

Publication history

Received: 02 December 2016
Revised: 25 February 2017
Accepted: 26 February 2017
Published: 13 June 2017
Issue date: October 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21471117, 21173159, 21563009, and 51420105002).

Return