Journal Home > Volume 10 , Issue 10

A novel metal-free bulk nanocatalyst, S–N-codoped hollow carbon nanosphere/graphene aerogel (SNC-GA-1000), has been successfully fabricated using a facile and clean solid ion transition route. In this method, ZnS is used as the hard template and S source, while polydopamine acts as a reducing agent and carbon source. At a high annealing temperature, Zn metal is reduced and evaporates, leaving only free S vapor to diffuse into the carbon layer. Interestingly, the as-obtained SNC-GA-1000 exhibits much higher catalytic activity in an organic reduction reaction than unloaded bare S–N-codoped carbon nanospheres. Hydrothermal reduction of the graphene oxide sheets loaded with ZnS@polydopamine core–shell nanospheres (ZnS@PDA) affords a three-dimensional bulk graphene aerogel. Although nanosized catalysts exhibit high catalytic activities, their subsequent separation is not always satisfactory, making post-treatment difficult. This approach achieves a trade-off between activity and separability. More importantly, due to the 3D structural nature, such bulk and handheld nanocatalysts can be easily separated and recycled.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Solid ion transition route to 3D S–N-codoped hollow carbon nanosphere/graphene aerogel as a metal-free handheld nanocatalyst for organic reactions

Show Author's information Jing Pan1,2Shuyan Song2( )Junqi Li2Fan Wang2Xin Ge2Shuang Yao2Xiao Wang2( )Hongjie Zhang2( )
College of Chemistry Jilin UniversityChangchun 130012 China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of SciencesChangchun 130022 China

Abstract

A novel metal-free bulk nanocatalyst, S–N-codoped hollow carbon nanosphere/graphene aerogel (SNC-GA-1000), has been successfully fabricated using a facile and clean solid ion transition route. In this method, ZnS is used as the hard template and S source, while polydopamine acts as a reducing agent and carbon source. At a high annealing temperature, Zn metal is reduced and evaporates, leaving only free S vapor to diffuse into the carbon layer. Interestingly, the as-obtained SNC-GA-1000 exhibits much higher catalytic activity in an organic reduction reaction than unloaded bare S–N-codoped carbon nanospheres. Hydrothermal reduction of the graphene oxide sheets loaded with ZnS@polydopamine core–shell nanospheres (ZnS@PDA) affords a three-dimensional bulk graphene aerogel. Although nanosized catalysts exhibit high catalytic activities, their subsequent separation is not always satisfactory, making post-treatment difficult. This approach achieves a trade-off between activity and separability. More importantly, due to the 3D structural nature, such bulk and handheld nanocatalysts can be easily separated and recycled.

Keywords: graphene aerogel, bulk nanocatalyst, solid ion transition, S–N-codoped, metal-free

References(42)

1

Yao, W.; Li, F.-L.; Li, H.-X.; Lang, J.-P. Fabrication of hollow Cu2O@CuO-supported Au–Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. J. Mater. Chem. A 2015, 3, 4578–4585.

2

Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011, 133, 3693–3695.

3

Xi, J. B.; Xiao, J. W.; Xiao, F.; Jin, Y. X.; Dong, Y.; Jing, F.; Wang, S. Mussel-inspired functionalization of cotton for nano-catalyst support and its application in a fixed-bed system with high performance. Sci. Rep. 2016, 6, 21904.

4

Zhang, Z. Y.; Sun, T.; Chen, C.; Xiao, F.; Gong, Z.; Wang, S. Bifunctional nanocatalyst based on three-dimensional carbon nanotube–graphene hydrogel supported Pd nanoparticles: One-pot synthesis and its catalytic properties. ACS Appl. Mater. Interfaces 2014, 6, 21035–21040.

5

Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494–6497.

6

Akhter, T.; Islam, M. M.; Faisal, S. N.; Haque, E.; Minett, A. I.; Liu, H. K.; Konstantinov, K.; Dou, S. X. Self-assembled N/S codoped flexible graphene paper for high performance energy storage and oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 2078–2087.

7

Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.

8

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

9

Zhuo, L. H.; Wu, Y. Q.; Wang, L. Y.; Ming, J.; Yu, Y. C.; Zhang, X. B.; Zhao, F. Y. CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. J. Mater. Chem. A 2013, 1, 3954–3960.

10

Su, C. L.; Tandiana, R.; Balapanuru, J.; Tang, W.; Pareek, K.; Nai, C. T.; Hayashi, T.; Loh, K. P. Tandem catalysis of amines using porous graphene oxide. J. Am. Chem. Soc. 2015, 137, 685–690.

11

Zhang, Z. Y.; Xiao, F.; Xi, J. B.; Sun, T.; Xiao, S.; Wang, H. R.; Wang, S.; Liu, Y. Q. Encapsulating Pd nanoparticles in double-shelled graphene@carbon hollow spheres for excellent chemical catalytic property. Sci. Rep. 2014, 4, 4053.

12

Fan, Y. Y.; Ma, W. G.; Han, D. X.; Gan, S. Y.; Dong, X. D.; Niu, L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015, 27, 3767–3773.

13

Jin, Y. X.; Xi, J. B.; Zhang, Z. Y.; Xiao, J. W.; Xiao, F.; Qian, L. H.; Wang, S. An ultra-low Pd loading nanocatalyst with efficient catalytic activity. Nanoscale 2015, 7, 5510–5515.

14

Cai, S. F.; Wang, D. S.; Niu, Z. Q.; Li, Y. D. Progress in organic reactions catalyzed by bimetallic nanomaterials. Chinese J. Catal. 2013, 34, 1964–1974.

15

Rong, H. P.; Cai, S. F.; Niu, Z. Q.; Li, Y. D. Composition- dependent catalytic activity of bimetallic nanocrystals: AgPd-catalyzed hydrodechlorination of 4-chlorophenol. ACS Catal. 2013, 3, 1560–1563.

16

Rong, H. P.; Niu, Z. Q.; Zhao, Y. F.; Cheng, H.; Li, Z.; Ma, L.; Li, J.; Wei, S. Q.; Li, Y. D. Structure evolution and associated catalytic properties of Pt-Sn bimetallic nano­particles. Chem. —Eur. J. 2015, 21, 12034–12041.

17

Yang, Z.; Yao, Z.; Li, G. F.; Fang, G. Y.; Nie, H. G.; Liu, Z.; Zhou, X. M.; Chen, X. A.; Huang, S. M. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205–211.

18

Chaudhari, N. K.; Song, M. Y.; Yu, J. S. Heteroatom-doped highly porous carbon from human urine. Sci. Rep. 2014, 4, 5221.

19

Kang, X. C.; Liu, H. Z.; Hou, M. Q.; Sun, X. F.; Han, H. L.; Jiang, T.; Zhang, Z. F.; Han, B. X. Synthesis of supported ultrafine non-noble subnanometer-scale metal particles derived from metal-organic frameworks as highly efficient heterogeneous catalysts. Angew. Chem. 2016, 128, 1092–1096.

20

Matter, P. H.; Ozkan, U. S. Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal. Lett. 2006, 109, 115–123.

21

Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.

22

Zhang, J.; Li, J. J.; Wang, Z. L.; Wang, X. N.; Feng, W.; Zheng, W.; Cao, W. W.; Hu, P. A. Low-temperature growth of large-area heteroatom-doped graphene film. Chem. Mater. 2014, 26, 2460–2466.

23

Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.

24

Li, N.; Wang, Z. Y.; Zhao, K. K.; Shi, Z. J.; Gu, Z. N.; Xu, S. K. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 2010, 48, 255–259.

25

Wang, F.; Song, S. Y.; Li, K.; Li, J. Q.; Pan, J.; Yao, S.; Ge, X.; Feng, J.; Wang, X.; Zhang, H. J. A "solid dual-ions- transformation" route to S, N co-doped carbon nanotubes as highly efficient "metal-free" catalysts for organic reactions. Adv. Mater. 2016, 28, 10679–10683.

26

Li, X.-H.; Li, H.-B.; Li, G.-D.; Chen, J.-S. General synthesis of uniform metal sulfide colloidal particles via autocatalytic surface growth: A self-correcting system. Inorg. Chem. 2009, 48, 3132–3138.

27

Nafiujjaman, M.; Nurunnabi, M.; Kang, S.-H.; Reeck, G. R.; Khan, H. A.; Lee, Y.-K. Ternary graphene quantum dot- polydopamine-Mn3O4 nanoparticles for optical imaging guided photodynamic therapy and T1-weighted magnetic resonance imaging. J. Mater. Chem. B 2015, 3, 5815–5823.

28

Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High- throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25–29.

29

Qiang, W. B.; Li, W.; Li, X. Q.; Chen, X.; Xu, D. K. Bioinspired polydopamine nanospheres: A superquencher for fluorescence sensing of biomolecules. Chem. Sci. 2014, 5, 3018–3024.

30

Chen, W. F.; Yan, L. F. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 2011, 3, 3132–3137.

31

Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.

32

Cao, H. L.; Zhou, X. F.; Qin, Z. H.; Liu, Z. P. Low- temperature preparation of nitrogen-doped graphene for supercapacitors. Carbon 2013, 56, 218–223.

33

He, J. T.; Ji, W. J.; Yao, L.; Wang, Y. W.; Khezri, B.; Webster, R. D.; Chen, H. Y. Strategy for nano-catalysis in a fixed-bed system. Adv. Mater. 2014, 26, 4151–4155.

34

Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 2010, 26, 2885–2893.

35

Li, J.; Liu, C.-Y.; Liu, Y. Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 2012, 22, 8426–8430.

36

Lu, X. M.; Sun, Y. T.; Chen, Z.; Gao, Y. F. A multi-functional textile that combines self-cleaning, water-proofing and VO2- based temperature-responsive thermoregulating. Sol. Energ. Mat. Sol. C. 2017, 159, 102–111.

37

Kong, X.-K.; Sun, Z.-Y.; Chen, M.; Chen, C. L.; Chen, Q.-W. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by n-doped graphene. Energy Environ. Sci. 2013, 6, 3260–3266.

38

Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W. Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Res. 2015, 8, 3992–4006.

39

Gao, L.; Li, R.; Sui, X. L.; Li, R.; Chen, C. L.; Chen, Q. W. Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. Environ. Sci. Technol. 2014, 48, 10191–10197.

40

Huang, G.; Yang, L.; Ma, X.; Jiang, J.; Yu, S. H.; Jiang, H. L. Metal–organic framework-templated porous carbon for highly efficient catalysis: The critical role of pyrrolic nitrogen species. Chem. —Eur. J. 2016, 22, 3470–3477.

41

Kong, X. K.; Chen, Q. W.; Lun, Z. Y. Probing the influence of different oxygenated groups on graphene oxide's catalytic performance. J. Mater. Chem. A 2014, 2, 610–613.

42

Gazi, S.; Ananthakrishnan, R. Metal-free-photocatalytic reduction of 4-nitrophenol by resin-supported dye under the visible irradiation. Appl. Catal. B 2011, 105, 317–325.

File
nr-10-10-3486_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 December 2016
Revised: 19 February 2017
Accepted: 23 February 2017
Published: 28 June 2017
Issue date: October 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

The authors are grateful for the financial aid from the National Natural Science Foundation of China (Nos. 51372242, 21590794, 21210001, and 21521092), Hong Kong, Macao and Taiwan Science and Technology Cooperation Special Project of Ministry of Science and Technology of China (No. 2014DFT10310), the National Key Basic Research Program of China (No. 2014CB643802), Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2011176), CAS- CSIRO project (No. GJHZ1730) and the Program of Science and Technology Development Plan of Jilin Province of China (No. 20140201007GX).

Return