Journal Home > Volume 10 , Issue 10

The mixed-dimensional van der Waals (vdW) heterostructure is a promising building block for strained electronics and optoelectronics because it avoids the bond fracture and atomic reconstruction under strain. We propose a novel mixed-dimensional vdW heterostructure between two-dimensional graphene and a one-dimensional ZnO nanowire for high-performance photosensing. By utilizing the piezoelectric properties of ZnO, strain modulation was accomplished in the mixed-dimensional vdW heterostructure to optimize the device per­formance. By combining the ultrahigh electrons transfer speed in graphene and the extremely long life time of holes in ZnO, an outstanding responsivity of 1.87 × 105 A/W was achieved. Under a tensile strain of only 0.44% on the ZnO nanowire, the responsivity was enhanced by 26%. A competitive model was proposed, in which the performance enhancement is due to the efficient promotion of the injection of photogenerated electrons from the ZnO into the graphene caused by the strain-induced positive piezopotential. Our study provides a strain-engineering strategy for controlling the behavior of the photocarriers in the mixed-dimensional vdW heterostructure, which can be also applied to other similar systems in the future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Strain modulation on graphene/ZnO nanowire mixed- dimensional van der Waals heterostructure for high-performance photosensor

Show Author's information Shuo Liu1,§Qingliang Liao1,§Zheng Zhang1( )Xiankun Zhang1Shengnan Lu1Lixin Zhou1Mengyu Hong1Zhuo Kang1Yue Zhang1,2( )
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering University of Science and Technology BeijingBeijing 100083 China
Beijing Municipal Key Laboratory for Advanced Energy Materials and Technologies University of Science and Technology BeijingBeijing 100083 China

§ Shuo Liu and Qingliang Liao contributed equally to this work.

Abstract

The mixed-dimensional van der Waals (vdW) heterostructure is a promising building block for strained electronics and optoelectronics because it avoids the bond fracture and atomic reconstruction under strain. We propose a novel mixed-dimensional vdW heterostructure between two-dimensional graphene and a one-dimensional ZnO nanowire for high-performance photosensing. By utilizing the piezoelectric properties of ZnO, strain modulation was accomplished in the mixed-dimensional vdW heterostructure to optimize the device per­formance. By combining the ultrahigh electrons transfer speed in graphene and the extremely long life time of holes in ZnO, an outstanding responsivity of 1.87 × 105 A/W was achieved. Under a tensile strain of only 0.44% on the ZnO nanowire, the responsivity was enhanced by 26%. A competitive model was proposed, in which the performance enhancement is due to the efficient promotion of the injection of photogenerated electrons from the ZnO into the graphene caused by the strain-induced positive piezopotential. Our study provides a strain-engineering strategy for controlling the behavior of the photocarriers in the mixed-dimensional vdW heterostructure, which can be also applied to other similar systems in the future.

Keywords: graphene, photosensor, ZnO nanowire, vdW heterostructure, strain modulation

References(40)

1

Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

2

Yu, W. J.; Liu, Y.; Zhou, H. L.; Yin, A. X.; Li, Z.; Huang, Y.; Duan, X. F. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952–958.

3

Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.

4

Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

5

Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light- emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

6

Zhao, M.; Zhang, W. T.; Liu, M. M.; Zou, C.; Yang, K. Q.; Yang, Y.; Dong, Y. Q.; Zhang, L. J.; Huang, S. M. Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers. Nano Res. 2016, 9, 3772–3780.

7

Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 2016, 9, 507–516.

8

Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181.

9

Sarkar, D.; Xie, X. J.; Liu, W.; Cao, W.; Kang, J. H.; Gong, Y. J.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 2015, 526, 91–95.

10

Liao, L.; Lin, Y. C.; Bao, M. Q.; Cheng, R.; Bai, J. W.; Liu, Y.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F. High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305–308.

11

Liu, Y. D.; Wang, F. Q.; Wang, X. M.; Wang, X. Z.; Flahaut, E.; Liu, X. L.; Li, Y.; Wang, X. R.; Xu, Y. B.; Shi, Y. et al. Planar carbon nanotube-graphene hybrid films for high- performance broadband photodetectors. Nat. Commun. 2015, 6, 8589.

12

Yang, H.; Heo, J.; Park, S.; Song, H. J.; Seo, D. H.; Byun, K. E.; Kim, P.; Yoo, I.; Chung, H. J.; Kim, K. Graphene barristor, a triode device with a gate-controlled schottky barrier. Science 2012, 336, 1140–1143.

13

Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.

14

Shao, D. L.; Gao, J.; Chow, P.; Sun, H. T.; Xin, G. Q.; Sharma, P.; Lian, J.; Koratkar, N. A.; Sawyer, S. Organic- inorganic heterointerfaces for ultrasensitive detection of ultraviolet light. Nano Lett. 2015, 15, 3787–3792.

15

Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G.-A.; Lau, S.-P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.

16

Wang, Z. H.; Li, M. Z.; Yang, L.; Zhang, Z. D.; Gao, X. P. A. Broadband photovoltaic effect of n-type topological insulator Bi2Te3 films on p-type Si substrates. Nano Res. 2017, 10, 1872–1879.

17

Liu, Y. J.; Liu, Y. D.; Qin, S. C.; Xu, Y. B.; Zhang, R.; Wang, F. Q. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res. 2017, 10, 1880–1887.

18

Liu, Y.; Zhang, Y.; Yang, Q.; Niu, S. M.; Wang, Z. L. Fundamental theories of piezotronics and piezo-phototronics. Nano Energy 2015, 14, 257–275.

19

Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.

20

Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

21

Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 2014, 9, 237–244.

22

Liu, S.; Liao, Q. L.; Lu, S. N.; Zheng, Z.; Zhang, G. J.; Zhang, Y. Strain modulation in graphene/ZnO nanorod film schottky junction for enhanced photosensing performance. Adv. Funct. Mater. 2016, 26, 1347–1353.

23

Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.

24

Shi, J.; Zhao, P.; Wang, X. D. Piezoelectric-polarization- enhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. Adv. Mater. 2013, 25, 916–921.

25

Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.

26

Liu, X. Q.; Yang, X. N.; Gao, G. Y.; Yang, Z. Y.; Liu, H. T.; Li, Q.; Lou, Z.; Shen, G. Z.; Liao, L.; Pan, C. F. et al. Enhancing photoresponsivity of self-aligned MoS2 field-effect transistors by piezo-phototronic effect from GaN nanowires. ACS Nano 2016, 10, 7451–7457.

27

Xue, F.; Chen, L. B.; Chen, J.; Liu, J. B.; Wang, L. F.; Chen, M. X.; Pang, Y. K.; Yang, X. N.; Gao, G. Y.; Zhai, J. Y. et al. P-type MoS2 and n-type ZnO diode and its performance enhancement by the piezophototronic effect. Adv. Mater. 2016, 28, 3391–3398.

28

Reina, A.; Son, H.; Jiao, L. Y.; Fan, B.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Transferring and identification of single- and few-layer graphene on arbitrary substrates. J. Phys. Chem. C 2008, 112, 17741–17744.

29

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large- area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

30

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D. D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

31

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

32

Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons: New York, 1981.

33

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y. S.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

34

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

35

Guo, W. H.; Xu, S. G.; Wu, Z. F.; Wang, N.; Loy, M. M. T.; Du, S. W. Oxygen-assisted charge transfer between ZnO quantum dots and graphene. Small 2013, 9, 3031–3036.

36

Liu, J. W.; Lu, R. T.; Xu, G. W.; Wu, J.; Thapa, P.; Moore, D. Development of a seedless floating growth process in solution for synthesis of crystalline ZnO micro/nanowire arrays on graphene: Towards high-performance nanohybrid ultraviolet photodetectors. Adv. Funct. Mater. 2013, 23, 4941–4948.

37

Boruah, B. D.; Mukherjee, A.; Sridhar, S.; Misra, A. Highly dense ZnO nanowires grown on graphene foam for ultraviolet photodetection. ACS Appl. Mater. Interfaces 2015, 7, 10606–10611.

38

Chang, H. X.; Sun, Z. H.; Ho, K. Y.-F.; Tao, X. M.; Yan, F.; Kwok, W.-M.; Zheng, Z. J. A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 2011, 3, 258–264.

39

Dang, V. Q.; Trung, T. Q.; Kim, D. I.; Duy Le, T.; Hwang, B. U.; Lee, D. W.; Kim, B. Y.; Toan Le, D.; Lee, N. E. Ultrahigh responsivity in graphene-ZnO nanorod hybrid UV photodetector. Small 2015, 11, 3054–3065.

40

Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

File
nr-10-10-3476_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 December 2016
Revised: 15 February 2017
Accepted: 23 February 2017
Published: 08 June 2017
Issue date: October 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2013CB932602), the National Key Research and Development Program of China (No. 2016YFA0202701), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (Nos. 51672026, 51602020, 51527802, and 51232001), China Postdoctoral Science Foundation (Nos. 2015M580981 and 2016T90033), Beijing Municipal Science & Technology Commission, and the State Key Laboratory for Advanced Metals and Materials (No. 2016Z-06), and the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-15-075A1, FRF-BR-15-036A, and FRF-AS-15-002).

Return