Journal Home > Volume 10 , Issue 10

It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers. In this paper, two hexagonal microteeth with varied nanoscaled air-gaps of a ZnO microcomb are used to construct coupled whispering-gallery cavities. This is done to achieve a stable single mode lasing based on Vernier effect without requiring any complicated or sophisticated manipulation to achieve positioning with nanoscale precision. Optical gain and the corresponding ultraviolet lasing performance were improved greatly through coupling with localized surface plasmons of Pt nanoparticles. The ZnO/Pt hybrid microcavities achieved a seven-fold enhancement of intensity of single mode lasing with higher side- mode suppression ratio and lower threshold. The mechanism that led to this enhancement has been described in detail.


menu
Abstract
Full text
Outline
About this article

Plasmon enhancement for Vernier coupled single-mode lasing from ZnO/Pt hybrid microcavities

Show Author's information Yueyue Wang1,2Feifei Qin1Junfeng Lu1Jitao Li1Zhu Zhu1Qiuxiang Zhu1Ye Zhu1Zengliang Shi1Chunxiang Xu1( )
State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering Southeast UniversityNanjing 210096 China
School of Sciences Zhejiang A & F UniversityLin'an 311300 China

Abstract

It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers. In this paper, two hexagonal microteeth with varied nanoscaled air-gaps of a ZnO microcomb are used to construct coupled whispering-gallery cavities. This is done to achieve a stable single mode lasing based on Vernier effect without requiring any complicated or sophisticated manipulation to achieve positioning with nanoscale precision. Optical gain and the corresponding ultraviolet lasing performance were improved greatly through coupling with localized surface plasmons of Pt nanoparticles. The ZnO/Pt hybrid microcavities achieved a seven-fold enhancement of intensity of single mode lasing with higher side- mode suppression ratio and lower threshold. The mechanism that led to this enhancement has been described in detail.

Keywords: ZnO/Pt microcavities, whispering-gallery-mode, single mode lasing, Vernier effect, surface plasmon coupling, ZnO microrod

References(45)

1

Song, W. L.; Yang, W. L.; Chen, Q.; Hou, Q. Z.; Feng, M. Entanglement dynamics for three nitrogen-vacancy centers coupled to a whispering-gallery-mode microcavity. Opt. Express 2015, 23, 13734–13751.

2

Yang, S. C.; Wang, Y.; Sun, H. D. Advances and prospects for whispering gallery mode microcavities. Adv. Opt. Mater. 2015, 3, 1136–1162.

3

Xu, C. X.; Dai, J.; Zhu, G. P.; Zhu, G. Y.; Lin, Y.; Li, J. T.; Shi, Z. L. Whispering-gallery mode lasing in ZnO microcavities. Laser Photonics Rev. 2014, 8, 469–494.

4

Dai, J.; Xu, C. X.; Li, J. T.; Lin, Y.; Guo, J. Y.; Zhu, G. Y. Photoluminescence and two-photon lasing of ZnO: Sn microdisks. J. Phys. Chem. C 2014, 118, 14542–14547.

5

Zhang, X. H.; Cheung, Y. F.; Zhang, Y. Y.; Choi, H. W. Whispering-gallery mode lasing from optically free-standing InGaN microdisks. Opt. Lett. 2014, 39, 5614–5617.

6

Grivas, C.; Li, C. Y.; Andreakou, P.; Wang, P. F.; Ding, M.; Brambilla, G.; Manna, L.; Lagoudakis, P. Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals. Nat. Commun. 2013, 4, 2376.

7

Zhang, Q.; Su, R.; Liu, X. F.; Xing, J.; Sum, T. C.; Xiong, Q. H. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 2016, 26, 6238–6245.

8

Zhang, Q.; Ha, S. T.; Liu, X. F.; Sum, T. C.; Xiong, Q. H. Room-temperature near-infrared high-Q perovskite whispering- gallery planar nanolasers. Nano Lett. 2014, 14, 5995–6001.

9

Rong, H. S.; Jones, R.; Liu, A. S.; Cohen, O.; Hak, D.; Fang, A.; Paniccia, M. A continuous-wave Raman silicon laser. Nature 2005, 433, 725–728.

10

Lu, Y. J.; Wang, C. Y.; Kim, J.; Chen, H. Y.; Lu, M. Y.; Chen, Y. C.; Chang, W. H.; Chen, L. J.; Stockman, M. I.; Shih, C. K. et al. All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing. Nano Lett. 2014, 14, 4381–4388.

11

Feng, L.; Wong, Z. J.; Ma, R. M.; Wang, Y.; Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 2014, 346, 972–975.

12

Han, S. G.; Lim, J.; Shin, J.; Lee, S. M.; Park, T.; Yoon, J.; Woo, K.; Lee, H.; Lee, W. Optically pumped distributed feedback dye lasing with slide-coated TiO2 inverse-opal slab as Bragg reflector. Opt. Lett. 2014, 39, 4743–4746.

13

Li, Z. Y.; Zhang, Z. Y.; Emery, T.; Scherer, A.; Psaltis, D. Single mode optofluidic distributed feedback dye laser. Opt. Express 2006, 14, 696–701.

14

Li, Q. M.; Wright, J. B.; Chow, W. W.; Luk, T. S.; Brener, I.; Lester, L. F.; Wang, G. T. Single-mode GaN nanowire lasers. Opt. Express 2012, 20, 17873–17879.

15

Ta, V. D.; Chen, R.; Sun, H. D. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Adv. Opt. Mater. 2014, 2, 220–225.

16

Gao, H.; Fu, A.; Andrews, S. C.; Yang, P. Cleaved-coupled nanowire lasers. Proc. Natl. Acad. Sci. USA 2013, 110, 865–869.

17

Grossmann, T.; Wienhold, T.; Bog, U.; Beck, T.; Friedmann, C.; Kalt, H.; Mappes, T. Polymeric photonic molecule super-mode lasers on silicon. Light: Sci. Appl. 2013, 2, e82.

18

Xiao, Y.; Meng, C.; Wang, P.; Ye, Y.; Yu, H. K.; Wang, S. S.; Gu, F. X.; Dai, L.; Tong, L. M. Single-nanowire single- mode laser. Nano Lett. 2011, 11, 1122–1126.

19

Zhang, Q.; Li, G. Y.; Liu, X. F.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q. H. A room temperature low- threshold ultraviolet plasmonic nanolaser. Nat. Commun. 2014, 5, 4953.

20

Chou, Y. H.; Chou, B. T.; Chiang, C. K.; Lai, Y. Y.; Yang, C. T.; Li, H.; Lin, T. R.; Lin, C. C; Kuo, H. C.; Wang, S. C. et al. Ultrastrong mode confinement in ZnO surface plasmon nanolasers. ACS Nano 2015, 9, 3978–3983.

21

Glaeske, M.; Setaro, A. Nanoplasmonic colloidal suspensions for the enhancement of the luminescent emission from single- walled carbon nanotubes. Nano Res. 2013, 6, 593–601.

22

Kang, Z.; Yan, X. Q.; Wang, Y. F.; Zhao, Y. G.; Bai, Z. M.; Liu, Y. C.; Zhao, K.; Cao, S. Y.; Zhang, Y. Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array. Nano Res. 2016, 9, 344–352.

23

Chu, S.; Ren, J. J.; Yan, D.; Huang, J.; Liu, J. L. Noble metal nanodisks epitaxially formed on ZnO nanorods and their effect on photoluminescence. Appl. Phys. Lett. 2012, 101, 043122.

24

Zhong, H. X.; Wei, Y.; Yue, Y. Z.; Zhang, L. H.; Liu, Y. Preparation of core-shell Ag@CeO2 nanocomposite by LSPR photothermal induced interface reaction. Nanotechnology 2016, 27, 135701.

25

Lu, J. F.; Li, J. T.; Xu, C. X.; Li, Y.; Dai, J.; Wang, Y. Y.; Lin, Y.; Wang, S. F. Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods. ACS Appl. Mater. Interfaces 2014, 6, 18301–18305.

26

Lin, Y.; Xu, C. X.; Li, J. T.; Zhu, G. Y.; Xu, X. Y.; Dai, J.; Wang, B. P. Localized surface plasmon resonance-enhanced two-photon excited ultraviolet emission of Au-decorated ZnO nanorod arrays. Adv. Opt. Mater. 2013, 1, 940–945.

27

Lin, Y.; Li, J. T.; Xu, C. X.; Fan, X. M.; Wang, B. P. Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower. Appl. Phys. Lett. 2014, 105, 142107.

28

Li, W.; Wang, S. L.; Hu, M. Y.; He, S. F.; Ge, P. P.; Wang, J.; Guo, Y. Y.; Liu, Z. W. Enhancement of electroluminescence from embedded Si quantum dots/SiO2 multilayers film by localized-surface-plasmon and surface roughening. Sci. Rep. 2015, 5, 11881.

29

Lin, J. M.; Lin, H. Y.; Cheng, C. L.; Chen, Y. F. Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. Nanotechnology 2006, 17, 4391–4394.

30

Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006, 6, 833–838.

31

Li, J. T.; Lin, Y.; Lu, J. F.; Xu, C. X.; Wang, Y. Y.; Shi, Z. L.; Dai, J. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance. ACS Nano 2015, 9, 6794–6800.

32

Wang, Y. Y.; Xu, C. X.; Jiang, M. M.; Li, J. T.; Dai, J.; Lu, J. F.; Li, P. L. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect. Nanoscale 2016, 8, 16631–16639.

33

Xu, C. X.; Sun, X. W.; Dong, Z. L.; Yu, M. B. Self- organized nanocomb of ZnO fabricated by Au-catalyzed vapor-phase transport. J. Cryst. Growth 2004, 270, 498–504.

34

Xu, X. B.; Wu, M.; Asoro, M.; Ferreira, P. J.; Fan, D. L. One-step hydrothermal synthesis of comb-like ZnO nano­structures. Cryst. Growth Des. 2012, 12, 4829–4833.

35

Zhang, N.; Tang, W.; Wang, P.; Zhang, X. T.; Zhao, Z. Y. In situ enhancement of NBE emission of Au–ZnO composite nanowires by SPR. CrystEngComm 2013, 15, 3301–3304.

36

Wang, Y. Y.; Xu, C. X.; Li, J. T.; Dai, J.; Lin, Y.; Zhu, G. Y.; Lu, J. F. Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles. Sci. Adv. Mater. 2015, 7, 1156–1162.

37

Surma S. A. Correlation of electron work function and surface-atomic structure of some d transition metals. Phys. Status Solidi A 2001, 183, 307–322.

DOI
38

Ren, Q. H.; Zhang, Y.; Lu, H. L.; Chen, H. Y.; Zhang, Y.; Li, D. H.; Liu, W. J.; Ding, S. J.; Jiang A. Q.; Zhang, D. W. Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer- deposited Al2O3 spacer layer. Nanotechnology 2016, 27, 165705.

39

Chen, S. S.; Pan, X. H.; He, H. P.; Chen, W.; Chen, C.; Dai, W.; Zhang, H. H.; Ding, P.; Huang, J. Y.; Lu, B. et al. Enhanced photoluminescence of nonpolar p-type ZnO film by surface plasmon resonance and electron transfer. Opt. Lett. 2015, 40, 649–652.

40

Zhu, G. Y.; Xu, C. X.; Cai, L. S.; Li, J. T.; Shi, Z. L.; Lin, Y.; Chen, G. F.; Ding, T.; Tian, Z. S.; Dai, J. Lasing behavior modulation for ZnO whispering-gallery microcavities. ACS Appl. Mater. Interfaces 2012, 4, 6195–6201.

41

Ringler, M.; Schwemer, A.; Wunderlich, M.; Nichtl, A.; Kürzinger, K.; Klar, T. A.; Feldmann, J. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 2008, 100, 203002.

42

Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.

43

Ding, M.; Zhao, D. X.; Yao, B.; E, S.; Guo, Z.; Zhang, L. G.; Shen, D. Z. The ultraviolet laser from individual ZnO microwire with quadrate cross section. Opt. Express 2012, 20, 13657–13662.

44

Xu, H. W.; Wright, J. B.; Luk, T. S.; Figiel, J. J.; Cross, K.; Lester, L. F.; Balakrishnan, G.; Wang, G. T.; Brener, I.; Li, Q. M. Single-mode lasing of GaN nanowire-pairs. Appl. Phys. Lett. 2012, 101, 113106.

45

Xu, E. M.; Zhang, X. L.; Zhou, L. N.; Zhang, Y.; Yu, Y.; Li, X.; Huang, D. X. Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops. Opt. Lett. 2010, 35, 1242–1244.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 November 2016
Revised: 14 February 2017
Accepted: 23 February 2017
Published: 25 May 2017
Issue date: October 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

The authors sincerely appreciate the help of Shufeng Wang and Yu Li at Peking University and Andong Xia at Institute of Chemistry Chinese Academy of Sciences for their technical support on time-resolved PL. This work was supported by the National Basic Research Program (No. 2013CB932903), National Natural Science Foundation (Nos. 61275054, 61475035, and 11404289), Jiangsu Province Science and Technology Support Program (No. BE2016177) and Natural Science Foundation of Zhejiang Province (No. LY17A040011).

Return