Journal Home > Volume 10 , Issue 10

In this article, we introduce Tsinghua Global Minimum (TGMin) as a new program for the global minimum searching of geometric structures of gas-phase or surface-supported atomic clusters, and the constrained basin-hopping (BH) algorithm implemented in this program. To improve the efficiency of the BH algorithm, several types of constraints are introduced to reduce the vast search space, including constraints on the random displacement step size, displacement of low-coordination atoms, and geometrical structure adjustment after displacement. The ultrafast shape-recognition (USR) algorithm and its variants are implemented to identify duplicate structures during the global minimum search. In addition to the Metropolis acceptance criterion, we also implemented a morphology-based constraint that confines the global minimum search to a specific type of morphology, such as planar or non-planar structures, which offers a strict divide-and-conquer strategy for the BH algorithm. These improvements are implemented in the TGMin program, which was developed over the past decade and has been used in a number of publications. We tested our TGMin program on global minimum structural searches for a number of metal and main-group clusters including C60, Au20 and B20 clusters. Over the past five years, the TGMin program has been used to determine the global minimum structures of a series of boron atomic clusters (such as [B26], [B28], [B30], [B35], [B36], [B39], [B40], [MnB16], [CoB18], [RhB18], and [TaB20]), metal-containing clusters Lin (n = 3–20), Au9(CO)8+ and [Cr6O19]2–, and the oxide-supported metal catalyst Au7/γ-Al2O3, as well as other isolated and surface-supported atomic clusters. In this article we present the major features of TGMin program and show that it is highly efficient at searching for global-minimum structures of atomic clusters in the gas phase and on various surface supports.


menu
Abstract
Full text
Outline
About this article

TGMin: A global-minimum structure search program based on a constrained basin-hopping algorithm

Show Author's information Yafan Zhao1,2,3Xin Chen3Jun Li3( )
Institute of Applied Physics and Computational Mathematics Beijing 100088 China
CAEP Software Center for High Performance Numerical SimulationBeijing 100088 China
Department of Chemistry and Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua UniversityBeijing 100084 China

Abstract

In this article, we introduce Tsinghua Global Minimum (TGMin) as a new program for the global minimum searching of geometric structures of gas-phase or surface-supported atomic clusters, and the constrained basin-hopping (BH) algorithm implemented in this program. To improve the efficiency of the BH algorithm, several types of constraints are introduced to reduce the vast search space, including constraints on the random displacement step size, displacement of low-coordination atoms, and geometrical structure adjustment after displacement. The ultrafast shape-recognition (USR) algorithm and its variants are implemented to identify duplicate structures during the global minimum search. In addition to the Metropolis acceptance criterion, we also implemented a morphology-based constraint that confines the global minimum search to a specific type of morphology, such as planar or non-planar structures, which offers a strict divide-and-conquer strategy for the BH algorithm. These improvements are implemented in the TGMin program, which was developed over the past decade and has been used in a number of publications. We tested our TGMin program on global minimum structural searches for a number of metal and main-group clusters including C60, Au20 and B20 clusters. Over the past five years, the TGMin program has been used to determine the global minimum structures of a series of boron atomic clusters (such as [B26], [B28], [B30], [B35], [B36], [B39], [B40], [MnB16], [CoB18], [RhB18], and [TaB20]), metal-containing clusters Lin (n = 3–20), Au9(CO)8+ and [Cr6O19]2–, and the oxide-supported metal catalyst Au7/γ-Al2O3, as well as other isolated and surface-supported atomic clusters. In this article we present the major features of TGMin program and show that it is highly efficient at searching for global-minimum structures of atomic clusters in the gas phase and on various surface supports.

Keywords: density functional theory, basin hopping, ultrafast shape recognition, global minimum search, cluster

References(90)

1

Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363–368.

2

Ma, Z.; Dai, S. Development of novel supported gold catalysts: A materials perspective. Nano Res. 2011, 4, 3–32.

3

Metin, Ö.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane. Nano Res. 2010, 3, 676–684.

4

Kirkpatric, S.; Gelatt, C. D., Jr.; Vecchi, M. P. Optimization by simulated annealing. Science 1983, 220, 671–680.

5

Wales, D. J.; Doye, J. P. K. Global optimization by basin- hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms. J. Phys. Chem. A 1997, 101, 5111–5116.

6

White, R. P.; Mayne, H. R. An investigation of two approaches to basin hopping minimization for atomic and molecular clusters. Chem. Phys. Lett. 1998, 289, 463–468.

7

Liberti, L.; Maculan, N. Global Optimization; Springer: New York, 2006.

DOI
8

Deaven, D. M.; Ho, K. M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 1995, 75, 288–291.

9

Daven, D. M.; Tit, N.; Morris, J. R.; Ho, K. M. Structural optimization of Lennard–Jones clusters by a genetic algorithm. Chem. Phys. Lett. 1996, 256, 195–200.

10
Johnston, R. L.; Mortimer-Jones, T. V.; Roberts, C.; Darby, S.; Manby, F. R. Application of genetic algorithms in nanoscience: Cluster geometry optimization. In Lecture Notes in Computer Science; Cagnoni, S.; Gottlieb, J.; Hart, E.; Middendorf, M.; Raidl, G. R., Eds.; Springer: Berlin Heidelberg, 2002; pp 92–101.https://doi.org/10.1007/3-540-46004-7_10
DOI
11

Johnston, R. L. Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries. Dalton Trans. 2003, 4193–4207.

12

Alexandrova, A. N.; Boldyrev, A. I. Search for the Lin0/+1/–1 (n = 5–7) lowest-energy structures using the ab initio gradient embedded genetic algorithm (GEGA). Elucidation of the chemical bonding in the lithium clusters. J. Chem. Theory Comput. 2005, 1, 566–580.

13

Alexandrova, A. N. H·(H2O)n clusters: Microsolvation of the hydrogen atom via molecular ab initio gradient embedded genetic algorithm (GEGA). J. Phys. Chem. A 2010, 114, 12591–12599.

14

Glass, C. W.; Oganov, A. R.; Hansen, N. USPEX: Evolutionary crystal structure prediction. Comput. Phys. Commun. 2006, 175, 713–720.

15

Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New developments in evolutionary structure prediction algorithm uspex. Comput. Phys. Commun. 2013, 184, 1172–1182.

16

Bera, P. P.; Schleyer, P. V. R.; Schaefer, H. F., III. Periodane: A wealth of structural possibilities revealed by the kick procedure. Int. J. Quantum Chem. 2007, 107, 2220–2223.

17

Zhai, H. C.; Ha, M.-A.; Alexandrova, A. N. Affck: Adaptive force-field-assisted ab initio coalescence kick method for global minimum search. J. Chem. Theory Comput. 2015, 11, 2385–2393.

18

Addicoat, M. A.; Metha, G. F. Kick: Constraining a stochastic search procedure with molecular fragments. J. Comput. Chem. 2009, 30, 57–64.

19

Bera, P. P.; Sattelmeyer, K. W.; Saunders, M.; Schaefer, H. F., III; Schleyer, P. V. R. Mindless chemistry. J. Phys. Chem. A 2006, 110, 4287–4290.

20

Call, S. T.; Zubarev, D. Y.; Boldyrev, A. I. Global minimum structure searches via particle swarm optimization. J. Comput. Chem. 2007, 28, 1177–1186.

21

Wang, Y. C.; Lv, J.; Zhu, L.; Ma, Y. M. Calypso: A method for crystal structure prediction. Comput. Phys. Commun. 2012, 183, 2063–2070.

22

Shang, C.; Liu, Z.-P. Stochastic surface walking method for structure prediction and pathway searching. J. Chem. Theory Comput. 2013, 9, 1838–1845.

23

Shang, C.; Zhang, X.-J.; Liu, Z.-P. Stochastic surface walking method for crystal structure and phase transition pathway prediction. Phys. Chem. Chem. Phys. 2014, 16, 17845–17856.

24

Jiang, D.-E.; Luo, W. D.; Tiago, M. L.; Dai, S. In search of a structural model for a thiolate-protected Au38 cluster. J. Phys. Chem. C. 2008, 112, 13905–13910.

25

Jiang, D.-E.; Walter, M. Au40: A large tetrahedral magic cluster. Phys. Rev. B 2011, 84, 193402.

26

Jiang, M. L.; Zeng, Q.; Zhang, T. T.; Yang, M. L.; Jackson, K. A. Icosahedral to double-icosahedral shape transition of copper clusters. J. Chem. Phys. 2012, 136, 104501.

27

Huang, W.; Sergeeva, A. P.; Zhai, H. J.; Averkiev, B. B.; Wang, L. S.; Boldyrev, A. I. A concentric planar doubly π-aromatic B19 cluster. Nat. Chem. 2010, 2, 202–206.

28

Yoo, S.; Zeng, X. C.; Zhu, X. L.; Bai, J. Possible lowest-energy geometry of silicon clusters Si21 and Si25. J. Am. Chem. Soc. 2003, 125, 13318–13319.

29

Yoo, S.; Zhao, J. J.; Wang, J. L.; Zeng, X. C. Endohedral silicon fullerenes Sin (27 ≤ n ≤ 39). J. Am. Chem. Soc. 2004, 126, 13845–13849.

30

Bai, J.; Cui, L.-F.; Wang, J. L.; Yoo, S.; Li, X.; Jellinek, J.; Koehler, C.; Frauenheim, T.; Wang, L.-S.; Zeng, X. C. Structural evolution of anionic silicon clusters Sin (20 ≤ n ≤ 45). J. Phys. Chem. A 2006, 110, 908–912.

31

Bulusu, S.; Zeng, X. C. Structures and relative stability of neutral gold clusters: Aun (n = 15–19). J. Chem. Phys. 2006, 125, 154303.

32

Choi, T. H.; Liang, R. B.; Maupin, C. M.; Voth, G. A. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions. J. Phys. Chem. B 2013, 117, 5165–5179.

33

Choi, T. H. Simulation of the (H2O)8 cluster with the SCC- DFTB electronic structure method. Chem. Phys. Lett. 2012, 543, 45–49.

34

Zhan, L. X.; Chen, J. Z. Y.; Liu, W.-K.; Lai, S. K. Asynchronous multicanonical basin hopping method and its application to cobalt nanoclusters. J. Chem. Phys. 2005, 122, 244707.

35

Paz-Borbón, L. O.; Mortimer-Jones, T. V.; Johnston, R. L.; Posada-Amarillas, A.; Barcaro, G.; Fortunelli, A. Structures and energetics of 98 atom Pd-Pt nanoalloys: Potential stability of the leary tetrahedron for bimetallic nanoparticles. Phys. Chem. Chem. Phys. 2007, 9, 5202–5208.

36

Doye, J. P. K.; Wales, D. J. Thermodynamics of global optimization. Phys. Rev. Lett. 1998, 80, 1357–1360.

37

Kiran, B.; Bulusu, S.; Zhai, H.-J.; Yoo, S.; Zeng, X. C.; Wang, L.-S. Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc. Natl. Acad. Sci. USA 2005, 102, 961–964.

38

Leary, R. H. Global optimization on funneling landscapes. J. Global Optim. 2000, 18, 367–383.

39

Kim, H. G.; Choi, S. K.; Lee, H. M. New algorithm in the basin hopping Monte Carlo to find the global minimum structure of unary and binary metallic nanoclusters. J. Chem. Phys. 2008, 128, 144702.

40

Zhan, L. X.; Piwowar, B.; Liu, W.-K.; Hsu, P. J.; Lai, S. K.; Chen, J. Z. Y. Multicanonical basin hopping: A new global optimization method for complex systems. J. Chem. Phys. 2004, 120, 5536–5542.

41

Iwamatsu, M.; Okabe, Y. Basin hopping with occasional jumping. Chem. Phys. Lett. 2004, 399, 396–400.

42

Cheng, L. J.; Cai, W. S.; Shao, X. G. A connectivity table for cluster similarity checking in the evolutionary optimization method. Chem. Phys. Lett. 2004, 389, 309–314.

43
Zhao, Y.-F.; Li, J. The computer software of Tsinghua Global Minima (TGMin) program, version 1.0. Intellectual Property Bureau of China, register no. 2013sr007920, Nov 15, 2012.
44
Luo, X.-M.; Jian, T.; Cheng, L.-J.; Li, W.-L.; Chen, Q.; Li, R.; Zhai, H.-J.; Li, S.-D.; Boldyrev, A. I.; Li, J. et al. B26: The smallest planar boron cluster with a hexagonal vacancy and a complicated potential landscape. Chem. Phys. Lett., in press, DOI: 10.1016/j.cplett.2016.12.051.https://doi.org/10.1016/j.cplett.2016.12.051
DOI
45

Wang, Y.-J.; Zhao, Y.-F.; Li, W.-L.; Jian, T.; Chen, Q.; You, X.-R.; Ou, T.; Zhao, X.-Y.; Zhai, H.-J.; Li, S.-D. et al. Observation and characterization of the smallest borospherene, B28 and B28. J. Chem. Phys. 2016, 144, 064307.

46

Li, W.-L.; Zhao, Y.-F.; Hu, H.-S.; Li, J.; Wang, L.-S. [B30]: A quasiplanar chiral boron cluster. Angew. Chem., Int. Ed. 2014, 53, 5540–5545.

47

Li, W.-L.; Chen, Q.; Tian, W.-J.; Bai, H.; Zhao, Y.-F.; Hu, H.-S.; Li, J.; Zhai, H.-J.; Li, S.-D.; Wang, L.-S. The B35 cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene. J. Am. Chem. Soc. 2014, 136, 12257–12260.

48

Piazza, Z. A.; Hu, H.-S.; Li, W.-L.; Zhao, Y.-F.; Li, J.; Wang, L.-S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.

49

Chen, Q.; Li, W.-L.; Zhao, Y.-F.; Zhang, S.-Y.; Hu, H.-S.; Bai, H.; Li, H.-R.; Tian, W.-J.; Lu, H.-G.; Zhai, H.-J. et al. Experimental and theoretical evidence of an axially chiral borospherene. ACS Nano 2015, 9, 754–760.

50

Zhai, H.-J.; Zhao, Y.-F.; Li, W.-L.; Chen, Q.; Bai, H.; Hu, H.-S.; Piazza, Z. A.; Tian, W.-J.; Lu, H.-G.; Wu, Y.-B. et al. Observation of an all-boron fullerene. Nat. Chem. 2014, 6, 727–731.

51

Jian, T.; Li, W.-L.; Popov, I. A.; Lopez, G. V.; Chen, X.; Boldyrev, A. I.; Li, J.; Wang, L.-S. Manganese-centered tubular boron cluster—MnB16: A new class of transition- metal molecules. J. Chem. Phys. 2016, 144, 154310.

52

Li, W.-L.; Jian, T.; Chen, X.; Chen, T.-T.; Lopez, G. V.; Li, J.; Wang, L.-S. The planar CoB18 cluster as a motif for metallo-borophenes. Angew. Chem., Int. Ed. 2016, 55, 7358–7363.

53

Jian, T.; Li, W.-L.; Chen, X.; Chen, T.-T.; Lopez, G. V.; Li, J.; Wang, L.-S. Competition between drum and quasi-planar structures in RbB18: Motifs for metallo-boronanotubes and metallo-borophenes. Chem. Sci. 2016, 7, 7020–7027.

54

Li, W.-L.; Jian, T.; Chen, X.; Li, H.-R.; Chen, T.-T.; Luo, X.-M.; Li, S.-D.; Li, J.; Wang, L.-S. Observation of a metal-centered B2-Ta@B18 tubular molecular rotor and a perfect Ta@B20 boron drum with the record coordination number of twenty. Chem. Commun. 2017, 53, 1587–1590.

55

Hu, H.-S.; Zhao, Y.-F.; Hammond, J. R.; Bylaska, E. J.; Aprà, E.; van Dam, H. J. J.; Li, J.; Govind, N.; Kowalski, K. Theoretical studies of the global minima and polarizabilities of small lithium clusters. Chem. Phys. Lett. 2016, 644, 235–242.

56

Jiang, N.; Schwarz, W. H. E.; Li, J. Theoretical studies on hexanuclear oxometalates [M6L19]q– (M = Cr, Mo, W, Sg, Nd, U). Electronic structures, oxidation states, aromaticity, and stability. Inorg. Chem. 2015, 54, 7171–7180.

57

Liu, J.-C.; Tang, Y.; Chang, C.-R.; Wang, Y.-G.; Li, J. Mechanistic insights into propene epoxidation with O2-H2O mixture on Au7/α-Al2O3: A hydroproxyl pathway from ab initio molecular dynamics simulations. ACS Catal. 2016, 6, 2525–2535.

58

Yang, X. F.; Wang, Y. L.; Zhao, Y. F.; Wang, A. Q.; Zhang, T.; Li, J. Adsorption-induced structural changes of gold cations from two- to three-dimensions. Phys. Chem. Chem. Phys. 2010, 12, 3038–3043.

59

Wang, L.-S. Photoelectron spectroscopy of size-selected boron clusters: From planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 2016, 35, 69–142.

60

Chen, X.; Zhao, Y.-F.; Wang, L.-S.; Li, J. Recent progresses of global minimum searches of nanoclusters with a constrained basin-hopping algorithm in the TGMin program. Comput. Theor. Chem. 2017, 1107, 57–65.

61

Bahn, S. R.; Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 2002, 4, 56–66.

62

Ballester, P. J.; Richards, W. G. Ultrafast shape recognition to search compound databases for similar molecular shapes. J. Comput. Chem. 2007, 28, 1711–1723.

63

Ballester, P. J.; Richards, W. G. Ultrafast shape recognition for similarity search in molecular databases. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 2007, 463, 1307–1321.

64

Ballester, P. J.; Finn, P. W.; Richards, W. G. Ultrafast shape recognition: Evaluating a new ligand-based virtual screening technology. J. Mol. Graph. Model. 2009, 27, 836–845.

65

Takeuchi, H. Clever and efficient method for searching optimal geometries of lennard-jones clusters. J. Chem. Inf. Model. 2006, 46, 2066–2070.

66

Kim, H. Y.; Kim, H. G.; Kim, D. H.; Lee, H. M. Overs­tabilization of the metastable structure of isolated Ag-Pd bimetallic clusters. J. Phys. Chem. C 2008, 112, 17138–17142.

67
Zhao, Y.-F. Theoretical Studies on the Catalytic Mechanisms of Methanol Synthesis. Ph. D. Thesis, Tsinghua University, 2012.
68

Pyykkö, P.; Riedel, S.; Patzschke, M. Triple-bond covalent radii. Chem. —Eur. J. 2005, 11, 3511–3520.

69

Pyykkö, P.; Atsumi, M. Molecular double-bond covalent radii for elements Li-E112. Chem. —Eur. J. 2009, 15, 12770–12779.

70

Pyykkö, P.; Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem. —Eur. J. 2009, 15, 186–197.

71

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

72

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

73

Nguyen, Q. C.; Ong, Y. S.; Soh, H.; Kuo, J.-L. Multiscale approach to explore the potential energy surface of water clusters (H2O)n n ≤ 8. J. Phys. Chem. A 2008, 112, 6257–6261.

74

Zhai, H. J.; Kiran, B.; Dai, B.; Li, J.; Wang, L. S. Unique CO chemisorption properties of gold hexamer: Au6(CO)n (n = 0–3). J. Am. Chem. Soc 2005, 127, 12098–12106.

75
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian09, revision A. 1.; Gaussian, Inc. : Wallingford, CT, USA, 2009.
76

te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with adf. J. Comput. Chem. 2001, 22, 931–967.

77

VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128.

78

Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L. et al. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477–1489.

79
JASMIN; CAEP Software Center for High Performance Numertical Simulation: Beijing, 2010. http://www.caep-scns.ac.cn/JASMIN.php (accesssed Feb 20, 2017).
80

Mo, Z. Y.; Zhang, A. Q.; Cao, X. L.; Liu, Q. K.; Xu, X. W.; An, H. B.; Pei, W. B.; Zhu, S. P. JASMIN: A parallel software infrastructure for scientific computing. Front. Comput. Sci. China 2010, 4, 480–488.

81

Fang, J.; Gao, X. Y.; Song, H. F.; Wang, H. On the existence of the optimal order for wavefunction extrapolation in Born– Oppenheimer molecular dynamics. J. Chem. Phys. 2016, 144, 244103.

82

Gao, X. Y.; Mo, Z. Y.; Fang, J.; Song, H. F.; Wang, H. Parallel 3-Dim fast Fourier transforms with load balancing of the plane waves. Comput. Phys. Commun. 2017, 211, 54–60.

83

Li, J.; Li, X.; Zhai, H. J.; Wang, L. S. Au20: A tetrahedral cluster. Science 2003, 299, 864–867.

84

Bai, H.; Chen, Q.; Zhao, Y.-F.; Wu, Y.-B.; Lu, H.-G.; Li, J.; Li, S.-D. B30H8, B39H92–, B42H10, B48H10, and B72H12: Polycyclic aromatic snub hydroboron clusters analogous to polycyclic aromatic hydrocarbons. J. Mol. Model. 2013, 19, 1195–1204.

85

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

86

Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703–1710.

87

Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641–3662.

88

Vandevondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105.

89

Pulay, P. Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett. 1980, 73, 393–398.

90

Xu, C.-Q.; Lee, M.-S.; Wang, Y.-G.; Cantu, D. C.; Li, J.; Glezakou, V. A.; Rousseau, R. Structural rearrangement of Au-Pd nanoparticles under reaction conditions: An ab initio molecular dynamics study. ACS Nano 2017, 11, 1649–1658.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 February 2017
Accepted: 23 February 2017
Published: 29 July 2017
Issue date: October 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

The TGMin program was initially developed at Tsinghua University (China) as a part of the Ph.D. Dissertation (2012) of Y. F. Z. under the supervision of J. L. Y. F. Z. is financially supported by the National Key Research and Development Program of China (No. 2016YFB0201203) and National High-tech R & D Program of China (No. 2015AA01A304). X. C. and J. L. are supported by the National Basic Research Program of China (No. 2013CB834603) and the National Natural Science Foundation of China (Nos. 21433005, 91426302, 21521091, and 21590792).

Return