Journal Home > Volume 10 , Issue 5

Persistent luminescence nanoparticles (PLNPs) and upconversion nanoparticles (UCNPs) are two special optical imaging nanoprobes. In this study, efficient upconverted persistent luminescence (UCPL) is realized by combining their unique features into polymethyl methacrylate, forming a film composed of both PLNPs and UCNPs. The red persistent luminescence (~640 nm) of the PLNPs (CaS: Eu, Tm, Ce) can be activated by upconverted green emission of UCNPs (β-NaYF4: Yb, Er@NaYF4) excited by near-infrared light (NIR). Using this strategy, both the unique optical properties of PLNPs and UCNPs can be optimally synergized, thus generating efficient upconversion, photoluminescence, and UCPL simultaneously. The UCPL system has potential applications in in vivo bioimaging by simply monitoring the biocompatible low power density of NIR-light-excited persistent luminescence. Due to its simplicity, we anticipate that this method for the preparation of UCPL composite can be easily adjusted using other available upconversion and persistent phosphor pairs for a number of biophotonic and photonic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Near-infrared light activated persistent luminescence nanoparticles via upconversion

Show Author's information Zhanjun Li1,2Ling Huang1Yuanwei Zhang1Yang Zhao1Hong Yang1Gang Han1( )
Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts01605USA
School of EnvironmentJinan UniversityGuangzhou510630China

Abstract

Persistent luminescence nanoparticles (PLNPs) and upconversion nanoparticles (UCNPs) are two special optical imaging nanoprobes. In this study, efficient upconverted persistent luminescence (UCPL) is realized by combining their unique features into polymethyl methacrylate, forming a film composed of both PLNPs and UCNPs. The red persistent luminescence (~640 nm) of the PLNPs (CaS: Eu, Tm, Ce) can be activated by upconverted green emission of UCNPs (β-NaYF4: Yb, Er@NaYF4) excited by near-infrared light (NIR). Using this strategy, both the unique optical properties of PLNPs and UCNPs can be optimally synergized, thus generating efficient upconversion, photoluminescence, and UCPL simultaneously. The UCPL system has potential applications in in vivo bioimaging by simply monitoring the biocompatible low power density of NIR-light-excited persistent luminescence. Due to its simplicity, we anticipate that this method for the preparation of UCPL composite can be easily adjusted using other available upconversion and persistent phosphor pairs for a number of biophotonic and photonic applications.

Keywords: nanoparticles, upconversion, persistent luminescence, imaging

References(42)

1

van den Eeckhout, K.; Smet, P. F.; Poelman, D. Persistent luminescence in Eu2+-doped compounds: A review. Materials 2010, 3, 2536–2566.

2

Li, Y.; Gecevicius, M.; Qiu, J. R. Long persistent phosphorsfrom fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090–2136.

3

le Masne de Chermont, Q.; Chaneac, C.; Seguin, J.; Pelle, F.; Maitrejean, S.; Jolivet, J. P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 9266–9271.

4

Liang, Y. J.; Liu, F.; Chen, Y. F.; Sun, K. N.; Pan, Z. W. Long persistent luminescence in the ultraviolet in Pb2+-doped Sr2MgGe2O7 persistent phosphor. Dalton Trans. 2016, 45, 1322–1326.

5

Liu, F.; Liang, Y. J.; Chen, Y. F.; Pan, Z. W. Divalent nickel-activated gallate-based persistent phosphors in the short-wave infrared. Adv. Opt. Mater. 2016, 4, 562–566.

6

Li, Y.; Li, Y. Y.; Chen, R. C.; Sharafudeen, K.; Zhou, S. F.; Gecevicius, M.; Wang, H. H.; Dong, G. P.; Wu, Y. L.; Qin, X. X. et al. Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. NPG Asia Mater. 2015, 7, e180.

7

Xu, J.; Ueda, J.; Kuroishi, K.; Tanabe, S. Fabrication of Ce3+-Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence. Scr. Mater. 2015, 102, 47–50.

8

Jin, Y. H.; Hu, Y. H.; Chen, L.; Ju, G. F.; Wu, H. Y.; Mu, Z. F.; He, M.; Xue, F. H. Luminescent properties of a green long persistent phosphor Li2MgGeO4: Mn2+. Opt. Mater. Express 2016, 6, 929–937.

9

Kong, J. T.; Zheng, W.; Liu, Y. S.; Li, R. F.; Ma, E.; Zhu, H. M.; Chen, X. Y. Persistent luminescence from Eu3+ in SnO2 nanoparticles. Nanoscale 2015, 7, 11048–11054.

10

Guo, H. J.; Wang, Y. H.; Chen, W. B.; Zeng, W.; Han, S. C.; Li, G.; Li, Y. Y. Controlling and revealing the trap distributions of Ca6BaP4O17: Eu2+, R3+ (R = Dy, Tb, Ce, Gd, Nd) by codoping different trivalent lanthanides. J. Mater. Chem. C 2015, 3, 11212–11218.

11

Bessière, A.; Lecointre, A.; Benhamou, R. A.; Suard, E.; Wallez, G.; Viana, B. How to induce red persistent luminescence in biocompatible Ca3(PO4)2. J. Mater. Chem. C 2013, 1, 1252–1259.

12

Palner, M.; Pu, K. Y.; Shao, S.; Rao, J. H. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem., Int. Ed. 2015, 54, 11477–11480.

13

Abdukayum, A.; Chen, J. T.; Zhao, Q.; Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125–14133.

14

Maldiney, T.; Doan, B. T.; Alloyeau, D.; Bessodes, M.; Scherman, D.; Richard, C. Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging. Adv. Funct. Mater. 2015, 25, 331–338.

15

Abdukayum, A.; Yang, C. X.; Zhao, Q.; Chen, J. T.; Dong, L. X.; Yan, X. P. Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo. Anal. Chem. 2014, 86, 4096–4101.

16

Dai, W. B.; Lei, Y. F.; Ye, S.; Song, E. H.; Chen, Z.; Zhang, Q. Y. Mesoporous nanoparticles Gd2O3@mSiO2/ZnGa2O4: Cr3+, Bi3+ as multifunctional probes for bioimaging. J. Mater. Chem. B 2016, 4, 1842–1852.

17

Shi, J. P.; Sun, X.; Li, J. L.; Man, H. Z.; Shen, J. S.; Yu, Y. K.; Zhang, H. W. Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 2015, 37, 260–270.

18

Wu, S. Q.; Chi, C. W.; Yang, C. X.; Yan, X. P. Penetrating peptide-bioconjugated persistent nanophosphors for longterm tracking of adipose-derived stem cells with superior signal-to-noise ratio. Anal. Chem. 2016, 88, 4114–4121.

19

Zhang, L.; Lei, J. P.; Liu, J. T.; Ma, F. J.; Ju, H. X. Persistent luminescence nanoprobe for biosensing and lifetime imaging of cell apoptosis via time-resolved fluorescence resonance energy transfer. Biomaterials 2015, 67, 323–334.

20

Tang, Y. R.; Song, H. J.; Su, Y. Y.; Lv, Y. Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal. Chem. 2013, 85, 11876–11884.

21

Tang, J.; Su, Y. Y.; Deng, D. Y.; Zhang, L. C.; Yang, N.; Lv, Y. A persistent luminescence microsphere-based probe for convenient imaging analysis of dopamine. Analyst 2016, 141, 5366–5373.

22

Chuang, Y. J.; Liu, F.; Wang, W.; Kanj, M. Y.; Poitzsch, M. E.; Pan, Z. W. Ultra-sensitive in-situ detection of nearinfrared persistent luminescent tracer nanoagents in crude oil-water mixtures. Sci. Rep. 2016, 6, 27993.

23

Liu, F.; Yan, W. Z.; Chuang, Y. J.; Zhen, Z. P.; Xie, J.; Pan, Z. W. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci. Rep. 2013, 3, 1554.

24

Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 2014, 13, 418–426.

25

Li, Z. J.; Zhang, Y. W.; Wu, X.; Wu, X. Q.; Maudgal, R.; Zhang, H. W.; Han, G. In vivo repeatedly charging nearinfrared- emitting mesoporous SiO2/ZnGa2O4: Cr3+ persistent luminescence nanocomposites. Adv. Sci. 2015, 2, 1500001.

26

Li, Z. J.; Zhang, Y. W.; Wu, X.; Huang, L.; Li, D. S.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm "luminous pearls" with enhanced in vivo renewable nearinfrared persistent luminescence. J. Am. Chem. Soc. 2015, 137, 5304–5307.

27

Bessière, A.; Jacquart, S.; Priolkar, K.; Lecointre, A.; Viana, B.; Gourier, D. ZnGa2O4: Cr3+: A new red long-lasting phosphor with high brightness. Opt. Express 2011, 19, 10131–10137.

28

Zhuang, Y. X.; Ueda, J.; Tanabe, S. Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping. Appl. Phys. Express 2013, 6, 052602.

29

Zhuang, Y. X.; Ueda, J.; Tanabe, S. Tunable trap depth in Zn(Ga1–x Alx)2O4: Cr, Bi red persistent phosphors: Considerations of high-temperature persistent luminescence and photostimulated persistent luminescence. J. Mater. Chem. C 2013, 1, 7849–7855.

30

Pan, Z. W.; Lu, Y. Y.; Liu, F. Sunlight-activated longpersistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 2012, 11, 58–63.

31

Liu, F.; Liang, Y. J.; Pan, Z. W. Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor. Phys. Rev. Lett. 2014, 113, 177401.

32

Li, Z. J.; Zhang, Y. W.; La, H. E.; Zhu, R.; El-Banna, G.; Wei, Y. Z.; Han, G. Upconverting NIR photons for bioimaging. Nanomaterials 2015, 5, 2148–2168.

33

Chen, X.; Peng, D. F.; Ju, Q.; Wang, F. Photon upconversion in core–shell nanoparticles. Chem. Soc. Rev. 2015, 44, 1318–1330.

34

Idris, N. M.; Jayakumar, M. K. G.; Bansal, A.; Zhang, Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem. Soc. Rev. 2015, 44, 1449–1478.

35

Wu, X. M.; Zhu, W. H. Stability enhancement of fluorophores for lighting up practical application in bioimaging. Chem. Soc. Rev. 2015, 44, 4179–4184.

36

Jia, D. D. Enhancement of long-persistence by Ce co-doping in CaS: Eu2+, Tm3+ red phosphor. J. Electrochem. Soc. 2006, 153, H198–H201.

37

Wu, X.; Zhang, Y. W.; Takle, K.; Bilsel, O.; Li, Z. J.; Lee, H.; Zhang, Z. J.; Li, D. S.; Fan, W.; Duan, C. Y. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 2016, 10, 1060–1066.

38

Van Haecke, J. E.; Smet, P. F.; De Keyser, K.; Poelman, D. Single crystal CaS: Eu and SrS: Eu luminescent particles obtained by solvothermal synthesis. J. Electrochem. Soc. 2007, 154, J278–J282.

39

Rodríguez Burbano, D. C.; Sharma, S. K.; Dorenbos, P.; Viana, B.; Capobianco, J. A. Persistent and photostimulated red emission in CaS: Eu2+, Dy3+ nanophosphors. Adv. Opt. Mater. 2015, 3, 551–557.

40

Guo, C. F.; Huang, D. X.; Su, Q. Methods to improve the fluorescence intensity of CaS: Eu2+ red-emitting phosphor for white LED. Mater. Sci. Eng. B 2006, 130, 189–193.

41

Sakdinawat, A.; Attwood, D. Nanoscale X-ray imaging. Nat. Photonics 2010, 4, 840–848.

42

Grayson, W. L.; Bunnell, B. A.; Martin, E.; Frazier, T.; Hung, B. P.; Gimble, J. M. Stromal cells and stem cells in clinical bone regeneration. Nat. Rev. Endocrinol. 2015, 11, 140–150.

File
nr-10-5-1840_ESM.pdf (905.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 January 2017
Revised: 21 February 2017
Accepted: 21 February 2017
Published: 24 March 2017
Issue date: May 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This research was supported by the start-up fund of the University of Massachusetts Medical School, a Worcester Foundation Mel Cutler Award, the National Institute of Health R01MH103133, the Human Frontier Science Program, a UMass CVIP award, and a UMass OCTV award.

Return