Journal Home > Volume 10 , Issue 10

In this paper, we report a new strategy for the fabrication of gold nanoring arrays via colloidal lithography and polymer-assisted self-assembly of gold nanoparticles (Au NPs). First, multi-segmented polymer nanorod arrays were fabricated via colloidal lithography. They were then used as templates for Au NP adsorption, which resulted in nanoparticles on the poly(4-vinyl pyridine) (P4VP) segments. Continuous gold nanorings were formed after electroless deposition of gold. The diameter, quantity, and spacing of the gold nanorings could be tuned. Three dimensional coaxial gold nanorings with varying diameters could be fabricated on a polymer nanorod by modifying the etch parameters. The nanorings exhibited optical plasmonic resonances at theoretically predicted wavelengths. In addition, the polymer-assisted gold nanorings were released from the substrate to generate a high yield of free-standing nanorings. This simple, versatile method was also used to prepare nanorings from other metals such as palladium.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polymer-assisted fabrication of gold nanoring arrays

Show Author's information Hongxu Chen1Shilin Mu1Liping Fang2Huaizhong Shen1Junhu Zhang1( )Bai Yang1
State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
College of Chemistry and Environmental ScienceHebei UniversityBaoding071002China

Abstract

In this paper, we report a new strategy for the fabrication of gold nanoring arrays via colloidal lithography and polymer-assisted self-assembly of gold nanoparticles (Au NPs). First, multi-segmented polymer nanorod arrays were fabricated via colloidal lithography. They were then used as templates for Au NP adsorption, which resulted in nanoparticles on the poly(4-vinyl pyridine) (P4VP) segments. Continuous gold nanorings were formed after electroless deposition of gold. The diameter, quantity, and spacing of the gold nanorings could be tuned. Three dimensional coaxial gold nanorings with varying diameters could be fabricated on a polymer nanorod by modifying the etch parameters. The nanorings exhibited optical plasmonic resonances at theoretically predicted wavelengths. In addition, the polymer-assisted gold nanorings were released from the substrate to generate a high yield of free-standing nanorings. This simple, versatile method was also used to prepare nanorings from other metals such as palladium.

Keywords: self-assembly, colloidal lithography, plasmonic, gold nanorings

References(40)

1

Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.

2

Liusman, C.; Li, S. Z.; Chen, X. D.; Wei, W.; Zhang, H.; Schatz, G. C.; Boey, F.; Mirkin, C. A. Free-standing bimetallic nanorings and nanoring arrays made by on-wire lithography. ACS Nano 2010, 4, 7676–7682.

3

Baek, K. M.; Kim, J. M.; Jeong, J, W.; Lee, S. Y.; Jung, Y. S. Sequentially self-assembled rings-in-mesh nanoplasmonic arrays for surface-enhanced Raman spectroscopy. Chem. Mater. 2015, 27, 5007-5013.

4

Xue, C.; Mirkin, C. A. pH-switchable silver nanoprism growth pathways. Angew. Chem., Int. Ed. 2007, 46, 2036–2038.

5

Zhang, J.; Li, S. Z.; Wu, J. S.; Schatz, G. C.; Mirkin, C. A. Plasmon mediated synthesis of silver triangular bipyramids. Angew. Chem., Int. Ed. 2009, 48, 7787–7791.

6

Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105, 4065–4067.

7

Wang, H.; Brandl, D. W.; Nordlander, P.; Halas, N. J. Plasmonic nanostructures: Artificial molecules. Acc. Chem. Res. 2007, 40, 53–62.

8

Lu, X. M.; Au, L.; McLellan, J.; Li, Z. -Y.; Marquez, M.; Xia, Y. N. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 2007, 7, 1764–1769.

9

Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.

10

Larsson, E. M.; Alegret, J.; K? ll, M.; Sutherland, D. S. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 2007, 7, 1256–1263.

11

Cetin, A. E.; Altug, H. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 2012, 6, 9989–9995.

12

Clark, A. W.; Glidle, A.; Cumming, D. R. S.; Cooper, J. M. Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors. J. Am. Chem. Soc. 2009, 131, 17615–17619.

13

Clark, A. W.; Sheridan, A. K.; Glidle, A.; Cumming, D. R. S.; Cooper, J. M. Tuneable visible resonances in crescent shaped nano-split-ring resonators. Appl. Phys. Lett. 2007, 91, 093109.

14

Gwinner, M. C.; Koroknay, E.; Fu, L. W.; Patoka, P.; Kandulski, W.; Giersig, M.; Giessen, H. Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography. Small 2009, 5, 400–406.

15

Cataldo, S.; Zhao, J.; Neubrech, F.; Frank, B.; Zhang, C. J.; Braun, P. V.; Giessen, H. Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates. ACS Nano 2012, 6, 979–985.

16

Babayan, Y.; McMahon, J. M.; Li, S. Z.; Gray, S. K.; Schatz, G. C.; Odom, T. W. Confining standing waves in optical corrals. ACS Nano 2009, 3, 615–620.

17

Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; K? ll, M.; Bryant, G. W.; García de Abajo, F. J. Optical properties of gold nanorings. Phys. Rev. Lett. 2003, 90, 057401.

18

Hao, F.; Larsson, E. M.; Ali, T. A.; Sutherland, D. S.; Nordlander, P. Shedding light on dark plasmons in gold nanorings. Chem. Phys. Lett. 2008, 458, 262-266.

19

Halpern, A. R.; Corn, R. M. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. ACS Nano 2013, 7, 1755–1762.

20

McLellan, J. M.; Geissler, M.; Xia, Y. N. Edge spreading lithography and its application to the fabrication of mesoscopic gold and silver rings. J. Am. Chem. Soc. 2004, 126, 10830–10831.

21

Yang, S. M.; Jang, S. G.; Choi, D. G.; Kim, S.; Yu, H. K. Nanomachining by colloidal lithography. Small 2006, 2, 458–475.

22

Yu, X. D.; Zhang, H. G.; Oliverio, J. K.; Braun, P. V. Template-assisted three-dimensional nanolithography via geometrically irreversible processing. Nano Lett. 2009, 9, 4424–4427.

23

Banaee, M. G.; Crozier, K. B. Gold nanorings as substrates for surface-enhanced raman scattering. Opt. Lett. 2010, 35, 760–762.

24

Near, R.; Tabor, C.; Duan, J. S.; Pachter, R.; El-Sayed, M. Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. Nano Lett. 2012, 12, 2158–2164.

25

Tsai, C. Y.; Lu, S. P.; Lin, J. W.; Lee, P. T. High sensitivity plasmonic index sensor using slablike gold nanoring arrays. Appl. Phys. Lett. 2011, 98, 153108.

26

Scheeler, S. P.; Lehr, D.; Kley, E. B.; Pacholski, C. Top-up fabrication of gold nanorings. Chem. —Asian J. 2014, 9, 2072–2076.

27

Behrens, S.; Habicht, W.; Wagner, K.; Unger, E. Assembly of nanoparticle ring structures based on protein templates. Adv. Mater. 2006, 18, 284–289.

28

Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.

29

Zhang, J. H.; Yang, B. Patterning colloidal crystals and nanostructure arrays by soft lithography. Adv. Funct. Mater. 2010, 20, 3411–3424.

30

Ofir, Y.; Samanta, B.; Rotello, V. M. Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1814–1825.

31

Lee, W.; Lee, S. Y.; Briber, R. M.; Rabin, O. Self-assembled SERS substrates with tunable surface plasmon resonances. Adv. Funct. Mater. 2011, 21, 3424–3429.

32

Chen, H. X.; Wang, T. Q.; Shen, H. Z.; Liu, W. D.; Wang, S. L.; Liu, K.; Zhang, J. H.; Yang, B. Ag nanoparticle/polymer composite barcode nanorods. Nano Res. 2015, 8, 2871–2880.

33

Li, X.; Wang, T. Q.; Zhang, J. H.; Zhu, D. F.; Zhang, X.; Ning, Y.; Zhang, H.; Yang, B. Controlled fabrication of fluorescent barcode nanorods. ACS Nano 2010, 4, 4350–4360.

34

Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20-22.

35

Li, Z. B.; Nan, J. J.; Zhang, X. M.; Ye, S. S.; Shen, H. Z.; Wang, S. L.; Fang, L. P.; Xue, P. H.; Zhang, J. H.; Yang, B. Modulate the morphology and spectroscopic property of gold nanoparticle arrays by polymer-assisted thermal treatment. J. Phys. Chem. C 2015, 119, 11839-11845.

36

Brown, K. R.; Lyon, L. A.; Fox, A. P.; Reiss, B. D.; Natan, M. J. Hydroxylamine seeding of colloidal Au nanoparticles. 3. Controlled formation of conductive Au films. Chem. Mater. 2000, 12, 314–323.

37

Zhang, X. M.; Ye, S. S.; Zhang, X.; Wu, L. P. Optical properties of SiO2@M (M = Au, Pd, Pt) core–shell nanoparticles: Material dependence and damping mechanisms. J. Mater. Chem. C 2015, 3, 2282–2290.

38

Bin, D.; Yang, B. B.; Zhang, K.; Wang, C. Q.; Wang, J.; Zhong, J. T.; Feng, Y.; Guo, J.; Du, Y. K. Design of PdAg hollow nanoflowers through galvanic replacement and their application for ethanol electrooxidation. Chem. —Eur. J. 2016, 22, 16642–16647.

39

Hao, F.; Nordlander, P.; Sonnefraud, Y.; Van Dorpe, P.; Maier, S. A. Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing. ACS Nano 2009, 3, 643–652.

40

Zhang, X. M.; Zhang J. H.; Wang, H.; Hao, Y. D.; Zhang, X.; Wang, T. Q.; Wang, Y. N.; Zhao, R.; Zhang, H.; Yang, B. Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: Morphology and refractive index sensitivity. Nanotechnology 2010, 21, 465702.

File
nr-10-10-3346_ESM.pdf (560.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 January 2017
Revised: 20 February 2017
Accepted: 21 February 2017
Published: 14 June 2017
Issue date: October 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21474037) and Doctoral Fund of Ministry of Education of China (No. 20130061110019).

Return