Journal Home > Volume 10 , Issue 10

Versatile optimization of the synthesis method and composition of Yb3+ and Tm3+ co-doped CaF2 nanoparticles as well as a novel biofunctionalization method were developed and evaluated. Through multistep synthesis, the luminescence intensity of the Tm3+ activator was enhanced by more than 10-fold compared to standard one-step synthesis. The proposed methods were used to homogenously distribute the doping ions within the nanoparticle's volume and thus reduce luminescence quenching. Optimization of dopant ions concentration led to the selection of the most efficient visible and near-infrared up-converting nanoparticles, which were CaF2 doped with 10% Yb3+ 0.05% Tm3+ and 20% Yb3+ 0.5% Tm3+, respectively. To illustrate the suitability of the synthesized nanoparticles as bio-labels, a dedicated biofunctionalization method was used, and the nanoparticles were applied for labeling and imaging of Candida albicans cells. This method shows great promise because of extremely low background and high specificity because of the presence of the attached molecules.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Biofunctionalized upconverting CaF2: Yb, Tm nanoparticles for Candida albicans detection and imaging

Show Author's information Małgorzata Misiak1( )Michał Skowicki1Tomasz Lipiński2,1Agnieszka Kowalczyk1Katarzyna Prorok1Sebastian Arabasz3,1Artur Bednarkiewicz1,4
Wrocław Research Centre EIT+, ul. Stabłowicka 147, 54-066Wrocław Poland
Insitute of Immunology and Experimental TherapyPolish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114WrocławPoland
Centre of Polymer and Carbon MaterialsPolish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819ZabrzePoland
Institute of Low Temperature and Structure Research Polish Academy of Sciences, ul. Okólna 2, 50-422Wrocław Poland

Abstract

Versatile optimization of the synthesis method and composition of Yb3+ and Tm3+ co-doped CaF2 nanoparticles as well as a novel biofunctionalization method were developed and evaluated. Through multistep synthesis, the luminescence intensity of the Tm3+ activator was enhanced by more than 10-fold compared to standard one-step synthesis. The proposed methods were used to homogenously distribute the doping ions within the nanoparticle's volume and thus reduce luminescence quenching. Optimization of dopant ions concentration led to the selection of the most efficient visible and near-infrared up-converting nanoparticles, which were CaF2 doped with 10% Yb3+ 0.05% Tm3+ and 20% Yb3+ 0.5% Tm3+, respectively. To illustrate the suitability of the synthesized nanoparticles as bio-labels, a dedicated biofunctionalization method was used, and the nanoparticles were applied for labeling and imaging of Candida albicans cells. This method shows great promise because of extremely low background and high specificity because of the presence of the attached molecules.

Keywords: nanomaterials, bioimaging, up-conversion luminescence, fluoride nanoparticles

References(59)

1

Mackowiak, S. A.; Schmidt, A.; Weiss, V.; Argyo, C.; von Schirnding, C.; Bein, T.; Br?uchle, C. Targeted drug delivery in cancer cells with red-light photoactivated mesoporous silica nanoparticles. Nano Lett. 2013, 13, 2576–2583.

2

Khaydukov, E. V.; Mironova, K. E.; Semchishen, V. A.; Generalova, A. N.; Nechaev, A. V.; Khochenkov, D. A.; Stepanova, E. V.; Lebedev, O. I.; Zvyagin, A. V.; Deyev, S. M. et al. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci. Rep. 2016, 6, 35103.

3

Gnach, A.; Bednarkiewicz, A. Lanthanide-doped up-converting nanoparticles: Merits and challenges. Nano Today 2012, 7, 532–563.

4

Fang, S.; Wang, C.; Xiang, J.; Cheng, L.; Song, X. J.; Xu, L. G.; Peng, R.; Liu, Z. Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective isolation and sensitive detection of circulating tumor cells. Nano Res. 2014, 7, 1327–1336.

5

Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C. -W.; Lin, V. S. Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliver. Rev. 2008, 60, 1278–1288.

6

Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2003, 2, 630–638.

7

Zhang, W. J.; Ye, J.; Zhang, Y. Y.; Li, Q. W.; Dong, X. W.; Jiang, H.; Wang, X. M. One-step facile synthesis of fluorescent gold nanoclusters for rapid bio-imaging of cancer cells and small animals. RSC Adv. 2015, 5, 63821–63826.

8

Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.

9

Liu, X. G.; Yan, C. -H.; Capobianco, J. A. Photon upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1299–1301.

10

Haase, M.; Sch?fer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829.

11

Rieffel, J.; Chitgupi, U.; Lovell, J. F. Recent advances in higher-order, multimodal, biomedical imaging agents. Small 2015, 11, 4445–4461.

12

DaCosta, M. V.; Doughan, S.; Han, Y.; Krull, U. J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal. Chim. Acta 2014, 832, 1–33.

13

Cheng, L.; Yang, K.; Zhang, S.; Shao, M. W.; Lee, S.; Liu, Z. Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res. 2010, 3, 722–732.

14

Liu, J. L.; Cheng, J. T.; Zhang, Y. Upconversion nanoparticle based LRET system for sensitive detection of MRSA DNA sequence. Biosens. Bioelectron. 2013, 43, 252–256.

15

Alonso-Cristobal, P.; Vilela, P.; El-Sagheer, A.; Lopez-Cabarcos, E.; Brown, T.; Muskens, O. L.; Rubio-Retama, J.; Kanaras, A. G. Highly sensitive DNA sensor based on upconversion nanoparticles and graphene oxide. ACS Appl. Mater. Interfaces 2015, 7, 12422–12429.

16

Wu, S. J.; Duan, N.; Ma, X. Y.; Xia, Y.; Yu, Y.; Wang, Z. P.; Wang, H. X. Simultaneous detection of enterovirus 71 and coxsackievirus A16 using dual-colour upconversion luminescent nanoparticles as labels. Chem. Commun. 2012, 48, 4866–4868.

17

Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580–1585.

18

Chatterjee, D. K.; Yong, Z. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine 2008, 3, 73–82.

19

Wang, C.; Cheng, L.; Liu, Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 2013, 3, 317–330.

20

Yan, R. X.; Li, Y. D. Down/up conversion in Ln3+-doped YF3 nanocrystals. Adv. Funct. Mater. 2005, 15, 763–770.

21

Thi Kim Dung, D.; Fukushima, S.; Furukawa, T.; Niioka, H.; Sannomiya, T.; Kobayashi, K.; Yukawa, H.; Baba, Y.; Hashimoto, M.; Miyake, J. Multispectral emissions of lanthanide-doped gadolinium oxide nanophosphors for cathodoluminescence and near-infrared upconversion/downconversion imaging. Nanomaterials 2016, 6, 163.

22

Lu, H. C.; Yi, G. S.; Zhao, S. Y.; Chen, D. P.; Guo, L. -H.; Cheng, J. Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J. Mater. Chem. 2004, 14, 1336–1341.

23

Boyer, J. -C.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 2007, 7, 847–852.

24

Rinkel, T.; Raj, A. N.; Dühnen, S.; Haase, M. Synthesis of 10 nm β-NaYF4: Yb, Er/NaYF4 core/shell upconversion nanocrystals with 5 nm particle cores. Angew. Chem., Int. Ed. 2016, 55, 1164–1167.

25

Menyuk, N.; Dwight, K.; Pierce, J. W. NaYF4: Yb, Er—An efficient upconversion phosphor. Appl. Phys. Lett. 1972, 21, 159–161.

26

Ye, X.; Collins, J. E.; Kang, Y.; Chen, J.; Chen, D. T. N.; Yodh, A. G.; Murray, C. B. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl. Acad. Sci. USA 2010, 107, 22430–22435.

27

Deng, M. L.; Ma, Y. X.; Huang, S.; Hu, G. F.; Wang, L. Y. Monodisperse upconversion NaYF4 nanocrystals: Syntheses and bioapplications. Nano Res. 2011, 4, 685–694.

28

Huang, S.; Bai, M.; Wang, L. Y. General and facile surface functionalization of hydrophobic nanocrystals with poly(amino acid) for cell luminescence imaging. Sci. Rep. 2013, 3, 2023.

29

Boyer, J. -C.; Manseau, M. -P.; Murray, J. I.; van Veggel, F. C. J. M. Surface modification of upconverting NaYF4 nanoparticles with PEG–phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 2010, 26, 1157–1164.

30

Deng, M. L.; Wang, L. Y. Unexpected luminescence enhancement of upconverting nanocrystals by cation exchange with well retained small particle size. Nano Res. 2014, 7, 782–793.

31

Pedroni, M.; Piccinelli, F.; Passuello, T.; Giarola, M.; Mariotto, G.; Polizzi, S.; Bettinelli, M.; Speghini, A. Lanthanide doped upconverting colloidal CaF2 nanoparticles prepared by a single-step hydrothermal method: Toward efficient materials with near infrared-to-near infrared upconversion emission. Nanoscale 2011, 3, 1456–1460.

32

Song, J. H.; Zhi, G. L.; Zhang, Y.; Mei, B. C. Synthesis and characterization of CaF2 nanoparticles with different doping concentrations of Er3+. Nano-Micro Lett. 2011, 3, 73–78.

33

Yi, G. S.; Chow, G. M. Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329.

34

Noculak, A.; Podhorodecki, A.; Pawlik, G.; Banski, M.; Misiewicz, J. Ion-ion interactions in β-NaGdF4: Yb3+, Er3+ nanocrystals—The effect of ion concentration and their clustering. Nanoscale 2015, 7, 13784–13792.

35

Kr?mer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lüthi, S. R. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 2004, 16, 1244–1251.

36

Suyver, J. F.; Grimm, J.; van Veen, M. K.; Biner, D.; Kr?mer, K. W.; Güdel, H. U. Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J. Lumin. 2006, 117, 1–12.

37

Dong, N. N.; Pedroni, M.; Piccinelli, F.; Conti, G.; Sbarbati, A.; Ramírez-Hernández, J. E.; Maestro, L. M.; Iglesias-de la Cruz, M. C.; Sanz-Rodriguez, F.; Juarranz, A. et al. NIRto-NIR two-photon excited CaF2: Tm3+, Yb3+ nanoparticles: Multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 2011, 5, 8665–8671.

38

Xu, C. T.; Svensson, N.; Axelsson, J.; Svenmarker, P.; Somesfalean, G.; Chen, G. Y.; Liang, H. J.; Liu, H. C.; Zhang, Z. G.; Andersson-Engels, S. Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media. Appl. Phys. Lett. 2008, 93, 171103.

39

Wang, F.; Chatterjee, D. K.; Li, Z. Q.; Zhang, Y.; Fan, X. P.; Wang, M. Q. Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology 2006, 17, 5786–5791.

40

Pedroni, M.; Piccinelli, F.; Passuello, T.; Polizzi, S.; Ueda, J.; Haro-González, P.; Martinez Mestro, L.; Jaque, D.; García Solé, J. A.; Bettinelli, M. et al. Water (H2O and D2O) dispersible NIR-to-NIR upconverting Yb3+, Tm3+ doped MF2 (M = Ca, Sr) colloids: Influence of the host crystal. Cryst. Growth Des. 2013, 13, 4906–4913.

41

Wang, G. F.; Peng, Q.; Li, Y. D. Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 2009, 131, 14200–14201.

42

Prorok, K.; Gnach, A.; Bednarkiewicz, A.; Str?k, W. Energy up-conversion in Tb3+/Yb3+ co-doped colloidal α-NaYF4 nanocrystals. J. Lumin. 2013, 140, 103–109.

43

Misiak, M.; Prorok, K.; Cichy, B.; Bednarkiewicz, A.; Str?k, W. Thulium concentration quenching in the up-converting α-Tm3+/Yb3+ NaYF4 colloidal nanocrystals. Opt. Mater. 2013, 35, 1124–1128.

44

Kumar, G. A.; Chen, C. W.; Riman, R. E. Optical spectroscopy and confocal fluorescence imaging of upconverting Er3+-doped CaF2 nanocrystals. Appl. Phys. Lett. 2007, 90, 093123.

45

Xia, Z. G.; Du, P. Synthesis and upconversion luminescence properties of CaF2: Yb3+, Er3+ nanoparticles obtained from SBA-15 template. J. Mater. Res. 2010, 25, 2035–2041.

46

Chen, D. Q.; Lei, L.; Xu, J.; Yang, A. P.; Wang, Y. S. Abnormal size-dependent upconversion emissions and multi-color tuning in Er3+-doped CaF2–YbF3 disordered solid-solution nanocrystals. Nanotechnology 2013, 24, 085708.

47

Zheng, W.; Zhou, S. Y.; Chen, Z.; Hu, P.; Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Li, R. F.; Huang, M. D.; Chen, X. Y. Sub-10 nm lanthanide-doped CaF2 nanoprobes for timeresolved luminescent biodetection. Angew. Chem., Int. Ed. 2013, 52, 6671–6676.

48

Quan, Z. W.; Yang, D. M.; Yang, P. P.; Zhang, X. M.; Lian, H. Z.; Liu, X. M.; Lin, J. Uniform colloidal alkaline earth metal fluoride nanocrystals: Nonhydrolytic synthesis and luminescence properties. Inorg. Chem. 2008, 47, 9509–9517.

49

Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 2011, 11, 835–840.

50

Martins, N.; Ferreira, I. C. F. R.; Barros, L.; Silva, S.; Henriques, M. Candidiasis: Predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 2014, 177, 223–240.

51

Wahyuningsih, R.; Freisleben, H. J.; Sonntag, H. G.; Schnitzler, P. Simple and rapid detection of Candida albicans DNA in serum by PCR for diagnosis of invasive candidiasis. J. Clin. Microbiol. 2000, 38, 3016–3021.

52

Li, X. M.; Wang, R.; Zhang, F.; Zhao, D. Y. Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett. 2014, 14, 3634–3639.

53

Ito, M.; Goutaudier, C.; Guyot, Y.; Lebbou, K.; Fukuda, T.; Boulon, G. Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1?X YbXF2+X . J. Phys. -Condens. Matter 2004, 16, 1501–1521.

54

Sobolev, B. P.; Fedorov, P. P. Phase diagrams of the CaF2-(Y, Ln)F3 systems I. Experimental. J. Less-Common Met. 1978, 60, 33–46.

55

Sobolev, B. P. Nonstoichiometry in inorganic fluorides: I. Nonstoichiometry in MFm-RFn (m < n ≤ 4) systems. Crystallogr. Rep. 2012, 57, 434–454.

DOI
56

Durán, N.; Silveira, C. P.; Durán, M.; Martinez, D. S. T. Silver nanoparticle protein corona and toxicity: A minireview. J. Nanobiotechnology 2015, 13, 55.

57

Vilanova, O.; Mittag, J. J.; Kelly, P. M.; Milani, S.; Dawson, K. A.; R?dler, J. O.; Franzese, G. Understanding the kinetics of protein–nanoparticle corona formation. ACS Nano 2016, 10, 10842–10850.

58

Wurm, F.; Steinbach, T.; Klok, H. A. One-pot squaric acid diester mediated aqueous protein conjugation. Chem. Commun. 2013, 49, 7815–7817.

59

Tietze, L. F.; Arlt, M.; Beller, M.; Glüsenkamp, K. H.; J?hde, E.; Rajewsky, M. F. Anticancer agents, 15. Squaric acid diethyl ester: A new coupling reagent for the formation of drug biopolymer conjugates. Synthesis of squaric acid ester amides and diamides. Chem. Ber. 1991, 124, 1215–1221.

File
nr-10-10-3333_ESM.pdf (4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 January 2017
Revised: 31 January 2017
Accepted: 20 February 2017
Published: 06 June 2017
Issue date: October 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

The research was financed by the Polish National Science Centre grant funded according to the decision no. DEC-2013/11/N/ST5/02716. T. L. acknowledges Polish National Science Centre "OPUS 5" (No. 2013/09/B/NZ6/03526).

Return