Journal Home > Volume 10 , Issue 10

Although nanostructures based on noble metal alloys are widely utilized in (electro)catalysis, their low-temperature synthesis remains an enormous challenge due to the different Nernst equilibrium potentials of metal precursors. Herein, we describe the successful synthesis of trimetallic PtRhNi alloy nanoassemblies (PtRhNi-ANAs) with tunable Pt/Rh ratios using a simple mixed cyanogel reduction method and provide a detailed characterization of their chemical composition, morphology, and structure. Additionally, the electrochemical properties of PtRhNi-ANAs are examined by cyclic voltammetry, revealing composition-dependent electrocatalytic activity in the ethanol oxidation reaction (EOR). Compared to a commercial Pt black electrocatalyst, optimized Pt3Rh1Ni2-ANAs display remarkably enhanced EOR electrocatalytic performance in alkaline media.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation

Show Author's information Huimin Liu1Jiahui Li2Lijuan Wang3Yawen Tang2( )Bao Yu Xia3,4( )Yu Chen1( )
Key Laboratory of Macromolecular Science of Shaanxi ProvinceShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal University, 620 Changan RoadXi'an710062China
Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University, 1 Wenyuan RoadNanjing210023China
A key laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST), 1037 Luoyu RoadWuhan430074China
Shenzhen Institute of Huazhong University of Science and Technology, 9 Yuexing RoadShenzhen518000China

Abstract

Although nanostructures based on noble metal alloys are widely utilized in (electro)catalysis, their low-temperature synthesis remains an enormous challenge due to the different Nernst equilibrium potentials of metal precursors. Herein, we describe the successful synthesis of trimetallic PtRhNi alloy nanoassemblies (PtRhNi-ANAs) with tunable Pt/Rh ratios using a simple mixed cyanogel reduction method and provide a detailed characterization of their chemical composition, morphology, and structure. Additionally, the electrochemical properties of PtRhNi-ANAs are examined by cyclic voltammetry, revealing composition-dependent electrocatalytic activity in the ethanol oxidation reaction (EOR). Compared to a commercial Pt black electrocatalyst, optimized Pt3Rh1Ni2-ANAs display remarkably enhanced EOR electrocatalytic performance in alkaline media.

Keywords: electrocatalysis, ethanol oxidation reaction, cyanogel, activity, trimetallic alloy

References(46)

1

Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt–Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.

2

Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

3

Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439–2450.

4

Puthiyapura, V. K.; Brett, D. J. L.; Russell, A. E.; Lin, W. -F.; Hardacre, C. Biobutanol as fuel for direct alcohol fuel cells-investigation of Sn-modified Pt catalyst for butanol electro-oxidation. ACS Appl. Mater. Interfaces 2016, 8, 12859–12870.

5

Huang, M. H.; Wu, W. L.; Wu, C. X.; Guan, L. H. Pt2SnCu nanoalloy with surface enrichment of Pt defects and SnO2 for highly efficient electrooxidation of ethanol. J. Mater. Chem. A 2015, 3, 4777–4781.

6

Gnanaprakasam, P.; Jeena, S. E.; Selvaraju, T. Hierarchical electroless Pt deposition at Au decorated reduced graphene oxide via a galvanic exchanged process: An electrocatalytic nanocomposite with enhanced mass activity for methanol and ethanol oxidation. J. Mater. Chem. A 2015, 3, 18010–18018.

7

Akhairi, M. A. F.; Kamarudin, S. K. Catalysts in direct ethanol fuel cell (DEFC): An overview. Int. J. Hydrogen Energ. 2016, 41, 4214–4228.

8

Kamarudin, M. Z. F.; Kamarudin, S. K.; Masdar, M. S.; Daud, W. R. W. Review: Direct ethanol fuel cells. Int. J. Hydrogen Energ. 2013, 38, 9438–9453.

9

Erini, N.; Rudi, S.; Beermann, V.; Krause, P.; Yang, R. Z.; Huang, Y. H.; Strasser, P. Exceptional activity of a Pt-Rh-Ni ternary nanostructured catalyst for the electrochemical oxidation of ethanol. ChemElectroChem 2015, 2, 903–908.

10

Li, H. J.; Wu, H. X.; Zhai, Y. J.; Xu, X. L.; Jin, Y. D. Synthesis of monodisperse plasmonic Au core-Pt shell concave nanocubes with superior catalytic and electrocatalytic activity. ACS Catal. 2013, 3, 2045–2051.

11

Guo, S. J.; Dong, S. J.; Wang, E. K. Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation. Energy Environ. Sci. 2010, 3, 1307–1310.

12

Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Threedimensional hierarchical Pt-Cu superstructures. Nano Res. 2015, 8, 832–838.

13

Zhao, T. -T.; Wang, H.; Han, X.; Jiang, K.; Lin, H. X.; Xie, Z. X.; Cai, W. B. A comparative investigation of electrocatalysis at Pt monolayers on shape-controlled Au nanocrystals: Facet effect versus strain effect. J. Mater. Chem. A 2016, 4, 15845–15850.

14

de Souza, J. P. I.; Queiroz, S. L.; Bergamaski, K.; Gonzalez, E. R.; Nart, F. C. Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques. J. Phys. Chem. B 2002, 106, 9825–9830.

15

Delpeuch, A. B.; Asset, T.; Chatenet, M.; Cremers, C. Electrooxidation of ethanol at room temperature on carbonsupported Pt and Rh-containing catalysts: A DEMS study. J. Electrochem. Soc. 2014, 161, F918–F924.

16

Lima, F. H. B.; Profeti, D.; Lizcano-Valbuena, W. H.; Ticianelli, E. A.; Gonzalez, E. R. Carbon-dispersed Pt–Rh nanoparticles for ethanol electro-oxidation. Effect of the crystallite size and of temperature. J. Electroanal. Chem. 2008, 617, 121–129.

17

Bergamaski, K.; Gonzalez, E. R.; Nart, F. C. Ethanol oxidation on carbon supported platinum-rhodium bimetallic catalysts. Electrochim. Acta 2008, 53, 4396–4406.

18

Delpeuch, A. B.; Maillard, F.; Chatenet, M.; Soudant, P.; Cremers, C. Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: A DEMS and in situ FTIR study. Appl. Catal. B: Environ. 2016, 181, 672–680.

19

Mukherjee, P.; Roy, P. S.; Bhattacharya, S. K. Improved carbonate formation from ethanol oxidation on nickel supported Pt-Rh electrode in alkaline medium at room temperature. Int. J. Hydrogen Energ. 2015, 40, 13357–13367.

20

Mukherjee, P.; Bagchi, J.; Dutta, S.; Bhattacharya, S. K. The nickel supported platinum catalyst for anodic oxidation of ethanol in alkaline medium. Appl. Catal. A: Gen. 2015, 506, 220–227.

21

Rizo, R.; Sebastián, D.; Lázaro, M. J.; Pastor, E. On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl. Catal. B: Environ. 2017, 200, 246–254.

22

Qu, Y. T.; Gao, Y. Z.; Wang, L.; Rao, J. C.; Yin, G. P. Mild synthesis of Pt/SnO2/graphene nanocomposites with remarkably enhanced ethanol electro-oxidation activity and durability. Chem. — Eur. J. 2016, 22, 193–198.

23

Mello, G. A. B.; Giz, M. J.; Chatenet, M.; Camara, G. A. The electrooxidation of acetaldehyde on platinum-rutheniumrhodium surfaces: A delicate balance between oxidation and carbon–carbon bond breaking. J. Electroanal. Chem. 2016, 765, 73–78.

24

Jeon, T. Y.; Kim, S. K.; Pinna, N.; Sharma, A.; Park, J.; Lee, S. Y.; Lee, H. C.; Kang, S. W.; Lee, H. K.; Lee, H. H. Selective dissolution of surface nickel close to platinum in PtNi nanocatalyst toward oxygen reduction reaction. Chem. Mater. 2016, 28, 1879–1887.

25

Li, H. -H.; Cui, C. -H.; Zhao, S.; Yao, H. -B.; Gao, M. -R.; Fan, F. -J.; Yu, S. -H. Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts. Adv. Energy Mater. 2012, 2, 1182–1187.

26

Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M. B.; Zhang, J.; Marinkovic, N. S.; Liu, P.; Frenkel, A. I.; Adzic, R. R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 2009, 8, 325–330.

27

Erini, N.; Loukrakpam, R.; Petkov, V.; Baranova, E. A.; Yang, R. Z.; Teschner, D.; Huang, Y. H.; Brankovic, S. R.; Strasser, P. Ethanol electro-oxidation on ternary platinumrhodium-tin nanocatalysts: Insights in the atomic 3D structure of the active catalytic phase. ACS Catal. 2014, 4, 1859–1867.

28

Soares, L. A.; Morais, C.; Napporn, T. W.; Kokoh, K. B.; Olivi, P. Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation. J. Power Sources 2016, 315, 47–55.

29

Jiang, K. Z.; Bu, L. Z.; Wang, P. T.; Guo, S. J.; Huang, X. Q. Trimetallic PtSnRh wavy nanowires as efficient nanoelectrocatalysts for alcohol electrooxidation. ACS Appl. Mater. Interfaces 2015, 7, 15061–15067.

30

Yang, G. X.; Frenkel, A. I.; Su, D.; Teng, X. W. Enhanced electrokinetics of C–C bond splitting during ethanol oxidation by using a Pt/Rh/Sn catalyst with a partially oxidized Pt and Rh core and a SnO2 shell. ChemCatChem 2016, 8, 2876–2880.

31

Zhu, W.; Ke, J.; Wang, S. B.; Ren, J.; Wang, H. H.; Zhou, Z. Y.; Si, R.; Zhang, Y. W.; Yan, C. H. Shaping singlecrystalline trimetallic Pt-Pd-Rh nanocrystals toward highefficiency C–C splitting of ethanol in conversion to CO2. ACS Catal. 2015, 5, 1995–2008.

32

Liu, H. M.; Liu, X. Y.; Li, Y. M.; Jia, Y. F.; Tang, Y. W.; Chen, Y. Hollow PtNi alloy nanospheres with enhanced activity and methanol tolerance for the oxygen reduction reaction. Nano Res. 2016, 9, 3494–3503.

33

Liu, X. Y.; Xu, G. R.; Chen, Y.; Lu, T. H.; Tang, Y. W.; Xing, W. A strategy for fabricating porous PdNi@Pt core–shell nanostructures and their enhanced activity and durability for the methanol electrooxidation. Sci. Rep. 2015, 5, 7619.

34

Zhang, L.; Wan, L.; Ma, Y. R.; Chen, Y.; Zhou, Y. M.; Tang, Y. W.; Lu, T. H. Crystalline palladium–cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Appl. Catal. B: Environ. 2013, 138–139, 229–235.

35

Xu, J. F.; Liu, X. Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H.; Tang, Y. W. Platinum-cobalt alloy networks for methanol oxidation electrocatalysis. J. Mater. Chem. 2012, 22, 23659–23667.

36

Vondrova, M.; McQueen, T. M.; Burgess, C. M.; Ho, D. M.; Bocarsly, A. B. Autoreduction of Pd?Co and Pt?Co cyanogels: Exploration of cyanometalate coordination chemistry at elevated temperatures. J. Am. Chem. Soc. 2008, 130, 5563–5572.

37

Deshpande, R. S.; Sharp-Goldman, S. L.; Willson, J. L.; Bocarsly, A. B.; Gross, J.; Finnefrock, A. C.; Gruner, S. M. Morphology and gas adsorption properties of palladium–cobalt-based cyanogels. Chem. Mater. 2003, 15, 4239–4246.

38

Burgess, C. M.; Vondrova, M.; Bocarsly, A. B. A versatile chemical method for the formation of macroporous transition metal alloys from cyanometalate coordination polymers. J. Mater. Chem. 2008, 18, 3694–3701.

39

Heibel, M.; Kumar, G.; Wyse, C.; Bukovec, P.; Bocarsly, A. B. Use of sol-gel chemistry for the preparation of cyanogels as ceramic and alloy precursors. Chem. Mater. 1996, 8, 1504–1511.

40

Pfennig, B. W.; Bocarsly, A. B.; Prud'homme, R. K. Synthesis of a novel hydrogel based on a coordinate covalent polymer network. J. Am. Chem. Soc. 1993, 115, 2661–2665.

41
Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation, Physical Electronics Division: Eden Prairie, MN, USA, 1992.
42

Wang, L. L.; Zhang, D. F.; Guo, L. Phase-segregated Pt-Ni chain-like nanohybrids with high electrocatalytic activity towards methanol oxidation reaction. Nanoscale 2014, 6, 4635–4641.

43

Zhang, J. F.; Li, K. D.; Zhang, B. Synthesis of dendritic Pt–Ni–P alloy nanoparticles with enhanced electrocatalytic properties. Chem. Commun. 2015, 51, 12012–12015.

44

Zhang, J. F.; Xu, Y.; Zhang, B. Facile synthesis of 3D Pd–P nanoparticle networks with enhanced electrocatalytic performance towards formic acid electrooxidation. Chem. Commun. 2014, 50, 13451–13453.

45

Ma, J. W.; Wang, J.; Zhang, G. H.; Fan, X. B.; Zhang, G. L.; Zhang, F. B.; Li, Y. Deoxyribonucleic acid-directed growth of well dispersed nickel-palladium-platinum nanoclusters on graphene as an efficient catalyst for ethanol electrooxidation. J. Power Sources 2015, 278, 43–49.

46

Delpeuch, A. B.; Asset, T.; Chatenet, M.; Cremers, C. Influence of the temperature for the ethanol oxidation reaction (EOR) on Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C. Fuel Cells 2015, 15, 352–360.

File
nr-10-10-3324_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 January 2017
Revised: 16 February 2017
Accepted: 18 February 2017
Published: 27 May 2017
Issue date: October 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

We acknowledge financial support by the National Natural Science Foundation of China (Nos. 21473111 and 21376122), Fundamental Research Funds for the Central Universities (No. GK201602002), Innovation Foundation of Shenzhen Government (No. JCYJ20160408173202143), the Joint Fund of Energy Storage of Qingdao (No. 20160012), and the Fundamental Research Funds of Huazhong University of Science and Technology (Nos. 3004013109 and 0118013089). We acknowledge the support of Analytical and Testing Center of Huazhong University of Science and Technology for SEM and XPS measurements.

Return