Journal Home > Volume 10 , Issue 10

An efficient, controllable, and facile two-step synthetic strategy to prepare graphene-based nanocomposites is proposed. A series of Fe3O4-decorated reduced graphene oxide (Fe3O4@RGO) nanocomposites incorporating Fe3O4 nanocrystals of various sizes were prepared by an ethanothermal method using graphene oxide (GO) and monodisperse Fe3O4 nanocrystals with diameters ranging from 4 to 10 nm. The morphologies and microstructures of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption measurements, and transmission electron microscopy. The results show that GO can be reduced to graphene during the ethanothermal process, and that the Fe3O4 nanocrystals are well dispersed on the graphene sheets generated in the process. The analysis of the electrochemical properties of the Fe3O4@RGO materials shows that nanocomposites prepared with Fe3O4 nanocrystals of different sizes exhibit different electrochemical performances. Among all samples, Fe3O4@RGO prepared with Fe3O4 nanocrystals of 6 nm diameter possessed the highest specific capacitance of 481 F/g at 1 A/g, highlighting the excellent capability of this material. This work illustrates a promising route to develop graphene-based nanocomposite materials with a wide range of potential applications.


menu
Abstract
Full text
Outline
About this article

An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties

Show Author's information Chao Lian1,2,§Zhuo Wang2,3,§Rui Lin2Dingsheng Wang2Chen Chen2( )Yadong Li2
Department of ChemistrySchool of ScienceBeijing Jiaotong UniversityBeijing100044China
Department of ChemistryTsinghua UniversityBeijing100084China
Institute of Electrical EngineeringChinese Academy of SciencesBeijing100190China

§ Chao Lian and Zhuo Wang contributed equally to this work.

Abstract

An efficient, controllable, and facile two-step synthetic strategy to prepare graphene-based nanocomposites is proposed. A series of Fe3O4-decorated reduced graphene oxide (Fe3O4@RGO) nanocomposites incorporating Fe3O4 nanocrystals of various sizes were prepared by an ethanothermal method using graphene oxide (GO) and monodisperse Fe3O4 nanocrystals with diameters ranging from 4 to 10 nm. The morphologies and microstructures of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption measurements, and transmission electron microscopy. The results show that GO can be reduced to graphene during the ethanothermal process, and that the Fe3O4 nanocrystals are well dispersed on the graphene sheets generated in the process. The analysis of the electrochemical properties of the Fe3O4@RGO materials shows that nanocomposites prepared with Fe3O4 nanocrystals of different sizes exhibit different electrochemical performances. Among all samples, Fe3O4@RGO prepared with Fe3O4 nanocrystals of 6 nm diameter possessed the highest specific capacitance of 481 F/g at 1 A/g, highlighting the excellent capability of this material. This work illustrates a promising route to develop graphene-based nanocomposite materials with a wide range of potential applications.

Keywords: graphene, nanocomposite, Fe3O4, supercapacitor, electrochemical capacitance

References(46)

1

Wang, Y. F.; Yang, X. W.; Qiu, L.; Li, D. Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: The importance of nano-architecturing. Energy Environ. Sci. 2013, 6, 477–481.

2

Cao, X. H.; Zheng, B.; Shi, W. H.; Yang, J.; Fan, Z. X.; Luo, Z. M.; Rui, X. H.; Chen, B.; Yan, Q. Y.; Zhang, H. Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 2015, 27, 4695–4701.

3

Liu, L. B.; Yu, Y.; Yan, C.; Li K.; Zheng, Z. J. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun. 2015, 6, 7260.

4

Yang, J.; Yu, C.; Fan, X. M.; Zhao, C. T.; Qiu, J. S. Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv. Funct. Mater. 2015, 25, 2109–2116.

5

Lin, Y.; Han, X. G.; Campbell, C. J.; Kim, J. W.; Zhao, B.; Luo, W.; Dai, J. Q.; Hu, L. B.; Connell, J. W. Holey graphene nanomanufacturing: Structure, composition, and electrochemical properties. Adv. Funct. Mater. 2015, 25, 2920–2927.

6

Jin, H. L.; Huang, H. H.; He, Y. H.; Feng, X.; Wang, S.; Dai, L. M.; Wang, J. C. Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 7588–7591.

7

Ping, J. F.; Wang, Y. X.; Lu, Q. P.; Chen, B.; Chen, J. Z.; Huang, Y.; Ma, Q. L.; Tan, C. L.; Yang, J.; Cao, X. H. et al. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Adv. Mater. 2016, 28, 7640–7645.

8

Nikitskiy, I.; Goossens, S.; Kufer, D.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat. Commun. 2016, 7, 11954.

9

Feng, K.; Zhong, J.; Zhao, B. H.; Zhang, H.; Xu, L.; Sun, X. H.; Lee, S. T. CuxCo1–x O nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia–borane. Angew. Chem., Int. Ed. 2016, 55, 11950–11954.

10

Guo, S. J.; Wen, D.; Zhai, Y. M.; Dong, S. J.; Wang, E. K. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 2010, 4, 3959–3968.

11

Cao, A. N.; Liu, Z.; Chu, S. S.; Wu, M. H.; Ye, Z. M.; Cai, Z. W.; Chang, Y. L.; Wang, S. F.; Gong, Q. H.; Liu, Y. F. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103–106.

12

Chang, K.; Chen, W. X. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 2011, 47, 4252–4254.

13

Liang, J. F.; Wei, W.; Zhong, D.; Yang, Q. L.; Li, L. D.; Guo, L. One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 454–459.

14

Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5852–5855.

15

Zhu, J. X.; Zhu, T.; Zhou, X. Z.; Zhang, Y. Y.; Lou, X. W.; Chen, X. D.; Zhang, H.; Hng, H. H.; Yan, Q. Y. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 2011, 3, 1084–1089.

16

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

17

Cai, L. L.; Rao, P. M.; Zheng, X. L. Morphology-controlled flame synthesis of single, branched, and flower-like α-MoO3 nanobelt arrays. Nano Lett. 2011, 11, 872–877.

18

Li, W. H.; Zamani, R.; Ibá?ez, M.; Cadavid, D.; Shavel, A.; Morante, J. R.; Arbiol, J.; Cabot, A. Metal ions to control the morphology of semiconductor nanoparticles: Copper selenide nanocubes. J. Am. Chem. Soc. 2013, 135, 4664–4667.

19

Susman, M. D.; Feldman, Y.; Vaskevich, A.; Rubinstein, I. Chemical deposition of Cu2O nanocrystals with precise morphology control. ACS Nano 2014, 8, 162–174.

20

Zhong, Y.; Wang, J. F.; Zhang, R. F.; Wei, W. B.; Wang, H. M.; Lü, X. P.; Bai, F.; Wu, H. M.; Haddad, R.; Fan, H. Y. Morphology-controlled self-assembly and synthesis of photocatalytic nanocrystals. Nano Lett. 2014, 14, 7175–7179.

21

Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.

22

Si, Y. C.; Samulski, E. T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20, 6792–6797.

23

Wu, Z. S.; Ren, W. C.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Liu, B. L.; Tang, D. M.; Yu, B.; Jiang, C. B.; Cheng, H. M. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 2009, 3, 411–417.

24

Ai, K. L.; Liu, Y. L.; Lu, L. H.; Cheng, X. L.; Huo, L. H. A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent. J. Mater. Chem. 2011, 21, 3365–3370.

25

Chang, J.; Xu, H.; Sun, J.; Gao, L. High pseudocapacitance material prepared via in situ growth of Ni(OH)2 nanoflakes on reduced graphene oxide. J. Mater. Chem. 2012, 22, 11146–11150.

26

Zu, S. Z.; Han, B. H. Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: Formation of supramolecular hydrogel. J. Phys. Chem. C 2009, 113, 13651–13657.

27

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

28

Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.

29

Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

30

Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619.

31

Pré, P.; Huchet, G.; Jeulin, D.; Rouzaud, J. N.; Sennour, M.; Thorel, A. A new approach to characterize the nanostructure of activated carbons from mathematical morphology applied to high resolution transmission electron microscopy images. Carbon 2013, 52, 239–258.

32

Wang, B. Y.; Chen, W.; Fu, H. Y.; Qu, X. L.; Zheng, S. R.; Xu, Z. Y.; Zhu, D. Q. Comparison of adsorption isotherms of single-ringed compounds between carbon nanomaterials and porous carbonaceous materials over six-order-of-magnitude concentration range. Carbon 2014, 79, 203–212.

33

Zhou, D.; Cui, Y.; Xiao, P. W.; Jiang, M. Y.; Han, B. H. A general and scalable synthesis approach to porous graphene. Nat. Commun. 2014, 5, 4716.

34

Wang, C. A.; Watson, J. K.; Louw, E.; Mathews, J. P. Construction strategy for atomistic models of coal chars capturing stacking diversity and pore size distribution. Energy Fuels 2015, 29, 4814–4826.

35

Liu, D. Q.; Jia, Z.; Zhu, J. X.; Wang, D. L. A regular, compact but microporous packing structure: High-density graphene assemblies for high-volumetric-performance supercapacitors. J. Mater. Chem. A 2015, 3, 12653–12662.

36

Geng, T.; Zhang, L.; Wang, H. Y.; Zhang, K. Y.; Zhou, X. Facile synthesis of porous Co3O4 nanoplates for supercapacitor applications. Bull. Mater. Sci. 2015, 38, 1171–1175.

37

Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76.

38

Lu, Z. Y.; Yang, Q.; Zhu, W.; Chang, Z.; Liu, J. F.; Sun, X. M.; Evans, D. G.; Duan, X. Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res. 2012, 5, 369–378.

39

Lee, J. W.; Hall, A. S.; Kim, J. D.; Mallouk, T. E. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 2012, 24, 1158–1164.

40

Yilmaz, G.; Guo, C. X.; Lu, X. M. High-performance solid-state supercapacitors based on V2O5/carbon nanotube composites. ChemElectroChem 2016, 3, 158–164.

41

Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592.

42

Wang, Q. H.; Jiao, L. F.; Du, H. M.; Wang, Y. J.; Yuan, H. T. Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J. Power. Sources 2014, 245, 101–106.

43

Li, L.; Gao, P.; Gai, S. L.; He, F.; Chen, Y. J.; Zhang, M. L.; Yang, P. P. Ultra small and highly dispersed Fe3O4 nanoparticles anchored on reduced graphene for supercapacitor application. Electrochim. Acta 2016, 190, 566–573.

44

Liu, T. Z.; Zhang, X. D.; Li, B. J.; Ding, J.; Liu, Y. S.; Li, G.; Meng, X. H.; Cai, Q.; Zhang, J. M. Fabrication of quasi-cubic Fe3O4@rGO composite via a colloid electrostatic self-assembly process for supercapacitors. RSC Adv. 2014, 4, 50765–50770.

45

Senthilkumar, S. T.; Selvan, R. K.; Lee, Y. S.; Melo, J. S. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A 2013, 1, 1086–1095.

46

Niu, H.; Zhou, D.; Yang, X.; Li, X.; Wang, Q.; Qu, F. Y. Towards three-dimensional hierarchical ZnO nanofiber@Ni(OH)2 nanoflake core–shell heterostructures for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 18413–18421.

Publication history
Copyright
Acknowledgements

Publication history

Received: 17 October 2016
Revised: 17 February 2017
Accepted: 18 February 2017
Published: 27 May 2017
Issue date: October 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21521091, 21390393, U1463202, 21573119, and 21590792), the National Key Research and Development Program of China (No. 2016YFA0202801) and Fundamental Research Funds for the Central Universities (No. 2015RC070).

Return