Journal Home > Volume 10 , Issue 9

Multicomponent metal sulfide materials with a yolk–shell structure and a single phase were studied for the first time as anode materials for sodium-ion batteries. Yolk–shell-structured Fe–Ni–O powders with a molar ratio of iron and nickel components of 1/1 were prepared via one-pot spray pyrolysis. The prepared Fe–Ni–O powders were transformed into yolk–shell-structured (Fe0.5Ni0.5)9S8 solid-solution powders via a sulfidation process. The initial discharge and charge capacities of the (Fe0.5Ni0.5)9S8 powders at a current density of 1 A·g−1 were 601 and 504 mA·h·g−1, respectively. The discharge capacities of the (Fe0.5Ni0.5)9S8 powders for the 2nd and 100th cycle were 530 and 527 mA·h·g−1, respectively, and their corresponding capacity retention measured from the 2nd cycle was 99%. The (Fe0.5Ni0.5)9S8 powders had high initial discharge and charge capacities at a low current density of 0.1 A·g−1, and the reversible discharge capacity decreased slightly from 568 to 465 mA·h·g−1 as the current density increased from 0.1 to 5.0 A·g−1. The synergetic effect of the novel yolk–shell structure and the multicomponent sulfide composition of the (Fe0.5Ni0.5)9S8 powders resulted in excellent sodium-ion storage performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Yolk–shell-structured (Fe0.5Ni0.5)9S8 solid-solution powders: Synthesis and application as anode materials for Na-ion batteries

Show Author's information Jung Hyun KimYun Chan Kang( )
Department of Materials Science and Engineering Korea UniversityAnam-Dong, Seongbuk-Gu Seoul 136-713 Republic of Korea

Abstract

Multicomponent metal sulfide materials with a yolk–shell structure and a single phase were studied for the first time as anode materials for sodium-ion batteries. Yolk–shell-structured Fe–Ni–O powders with a molar ratio of iron and nickel components of 1/1 were prepared via one-pot spray pyrolysis. The prepared Fe–Ni–O powders were transformed into yolk–shell-structured (Fe0.5Ni0.5)9S8 solid-solution powders via a sulfidation process. The initial discharge and charge capacities of the (Fe0.5Ni0.5)9S8 powders at a current density of 1 A·g−1 were 601 and 504 mA·h·g−1, respectively. The discharge capacities of the (Fe0.5Ni0.5)9S8 powders for the 2nd and 100th cycle were 530 and 527 mA·h·g−1, respectively, and their corresponding capacity retention measured from the 2nd cycle was 99%. The (Fe0.5Ni0.5)9S8 powders had high initial discharge and charge capacities at a low current density of 0.1 A·g−1, and the reversible discharge capacity decreased slightly from 568 to 465 mA·h·g−1 as the current density increased from 0.1 to 5.0 A·g−1. The synergetic effect of the novel yolk–shell structure and the multicomponent sulfide composition of the (Fe0.5Ni0.5)9S8 powders resulted in excellent sodium-ion storage performance.

Keywords: sodium-ion batteries, spray pyrolysis, yolk–shell, metal sulfide, multicomponent sulfide

References(44)

1

Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 2014, 26, 4139–4144.

2

Jang, J. Y.; Lee, Y.; Kim, Y.; Lee, J.; Lee, S. M.; Lee, K. T.; Choi, N. S. Interfacial architectures based on a binary additive combination for high-performance Sn4P3 anodes in sodium-ion batteries. J. Mater. Chem. A 2015, 3, 8332–8338.

3

Choi, S. H.; Ko, Y. N.; Lee, J. K.; Kang, Y. C. 3D MoS2- graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 2015, 25, 1780–1788.

4

Xu, X. J.; Ji, S. M.; Gu, M. Z.; Liu, J. In situ synthesis of MnS hollow microspheres on reduced graphene oxide sheets as high-capacity and long-life anodes for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 20957–20964.

5

Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.

6

You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. W.; Guo, Y. G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128.

7

Zhang, Z. A.; Shi, X. D.; Yang, X.; Fu, Y.; Zhang, K.; Lai, Y. Q.; Li, J. Nanooctahedra particles assembled FeSe2 microspheres embedded into sulfur-doped reduced graphene oxide sheets as a promising anode for sodium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 13849–13856.

8

Park, J.; Kim, J. S.; Park, J. W.; Nam, T. H.; Kim, K. W.; Ahn, J. H.; Wang, G. X.; Ahn, H. J. Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization. Electrochim. Acta 2013, 92, 427–432.

9

Ko, Y. N.; Choi, S. H.; Kang, Y. C. Hollow cobalt selenide microspheres: Synthesis and application as anode materials for Na-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 6449–6456.

10

Kim, T. B.; Choi, J. W.; Ryu, H. S.; Cho, G. B.; Kim, K. W.; Ahn, J. H.; Cho, K. K.; Ahn, H. J. Electrochemical properties of sodium/pyrite battery at room temperature. J. Power Sources 2007, 174, 1275–1278.

11

Saha, P.; Jampani, P. H.; Datta, M. K.; Hong, D.; Okoli, C. U.; Manivannan, A.; Kumta, P. N. Electrochemical performance of chemically and solid state-derived chevrel phase Mo6T8 (T = S, Se) positive electrodes for sodium-ion batteries. J. Phys. Chem. C 2015, 119, 5771–5782.

12

Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.

13

Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922.

14

Kim, Y.; Kim, Y.; Park, Y.; Jo, Y. N.; Kim, Y. J.; Choi, N. S.; Lee, K. T. SnSe alloy as a promising anode material for Na-ion batteries. Chem. Commun. 2015, 51, 50–53.

15

Cho, J. S.; Lee, S. Y.; Lee, J. K.; Kang, Y. C. Iron telluride- decorated reduced graphene oxide hybrid microspheres as anode materials with improved Na-ion storage properties. ACS Appl. Mater. Interfaces 2016, 8, 21343–21349.

16

Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X. H.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680–3688.

17

Klein, F.; Jache, B.; Bhide, A.; Adelhelm, P. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 15876–15887.

18

Xu, Y. H.; Zhu, Y. J.; Liu, Y. H.; Wang, C. S. Electro­chemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv. Energy Mater. 2013, 3, 128–133.

19

Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168–177.

20

Sharma, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2855–2861.

21

Choi, S. H.; Kang, Y. C. Synergetic compositional and morphological effects for improved Na+ storage properties of Ni3Co6S8-reduced graphene oxide composite powders. Nanoscale 2015, 7, 6230–6237.

22

Choi, S. H.; Kang, Y. C. Using simple spray pyrolysis to prepare yolk–shell-structured ZnO–Mn3O4 systems with the optimum composition for superior electrochemical properties. Chem. —Eur. J. 2014, 20, 3014–3018.

23

Park, K.-S.; Seo, S.-D.; Shim, H.-W.; Kim, D.-W. Elec­trochemical performance of NixCo1–xMoO4 (0 ≤ x ≤ 1) nanowire anodes for lithium-ion batteries. Nanoscale Res. Lett. 2012, 7, 35.

24

Zhao, Y. B.; Manthiram, A. Bi0.94Sb1.06S3 nanorod cluster anodes for sodium-ion batteries: Enhanced reversibility by the synergistic effect of the Bi2S3-Sb2S3 solid solution. Chem. Mater. 2015, 27, 6139–6145.

25

Choi, S. H.; Kang, Y. C. Synergetic effect of yolk–shell structure and uniform mixing of SnS-MoS2 nanocrystals for improved Na-ion storage capabilities. ACS Appl. Mater. Interfaces 2015, 7, 24694–24702.

26

Hong, Y. J.; Son, M. Y.; Park, B. K.; Kang, Y. C. One-pot synthesis of yolk–shell materials with single, binary, ternary, quaternary, and quinary systems. Small 2013, 9, 2224–2227.

27

Hong, Y. J.; Son, M. Y.; Kang, Y. C. One-pot facile synthesis of double-shelled SnO2 yolk–shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv. Mater. 2013, 25, 2279–2283.

28

Qu, S.; Wang, J.; Kong, J. L.; Yang, P. Y.; Chen, G. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta 2007, 71, 1096–1102.

29

Wang, C.; Wang, T. S.; Wang, B. Q.; Zhou, X.; Cheng, X. Y.; Sun, P.; Zheng, J.; Lu, G. Y. Design of α-Fe2O3 nanorods functionalized tubular NiO nanostructure for discriminating toluene molecules. Sci. Rep. 2016, 6, 26432.

30

Uddin, M. E.; Kim, N. H.; Kuila, T.; Lee, S. H.; Hui, D.; Lee, J. H. Preparation of reduced graphene oxide-NiFe2O4 nanocomposites for the electrocatalytic oxidation of hydrazine. Compos. Part B-Eng. 2015, 79, 649–659.

31

Liu, X. J.; Liu, J. F.; Sun, X. M. NiCo2O4@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors. J. Mater. Chem. A 2015, 3, 13900–13905.

32

Seefeld, S.; Limpinsel, M.; Liu, Y.; Farhi, N.; Weber, A.; Zhang, Y. N.; Berry, N.; Kwon, Y. J.; Perkins, C. L.; Hemminger, J. C. et al. Iron pyrite thin films synthesized from an Fe(acac)3 ink. J. Am. Chem. Soc. 2013, 135, 4412–4424.

33

Park, B. I.; Yu, S.; Hwang, Y.; Cho, S. H.; Lee, J. S.; Park, C.; Lee, D. K.; Lee, S. Y. Highly crystalline Fe2GeS4 nanocrystals: Green synthesis and their structural and optical characterization. J. Mater. Chem. A 2015, 3, 2265–2270.

34

Legrand, D. L.; Nesbitt, H. W.; Bancroft, G. M. X-ray photoelectron spectroscopic study of a pristine millerite (NiS) surface and the effect of air and water oxidation. Am. Mineral. 1998, 83, 1256–1265.

35

Jiang, N.; Bogoev, L.; Popova, M.; Gul, S.; Yano, J.; Sun, Y. J. Electrodeposited nickel-sulfide films as competent hydrogen evolution catalysts in neutral water. J. Mater. Chem. A 2014, 2, 19407–19414.

36

Wang, X. B.; Hao, J.; Su, Y. C.; Liu, F. G.; An, J.; Lian, J. S. A Ni1–xZnxS/Ni foam composite electrode with multi- layers: One-step synthesis and high supercapacitor perfor­mance. J. Mater. Chem. A 2016, 4, 12929–12939.

37

Fantauzzi, M.; Elsener, B.; Atzei, D.; Rigoldi, A.; Rossi, A. Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv. 2015, 5, 75953–75963.

38

Wang, Y. X.; Yang, J. P.; Chou, S. L.; Liu, H. K.; Zhang, W. X.; Zhao, D. Y.; Dou, S. X. Uniform yolk–shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nat. Commun. 2015, 6, 8689.

39

Kang, H. Y.; Liu, Y. C.; Cao, K. Z.; Zhao, Y.; Jiao, L. F.; Wang, Y. J.; Yuan, H. T. Update on anode materials for Na-ion batteries. J. Mater. Chem. A 2015, 3, 17899–17913.

40

Park, G. D.; Cho, J. S.; Kang, Y. C. Sodium-​ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale kirkendall effect. Nanoscale 2015, 7, 16781–16788.

41

Wang, T. S.; Hu, P.; Zhang, C. J.; Du, H. P.; Zhang, Z. H.; Wang, X. G.; Chen, S. G.; Xiong, J. W.; Cui, G. L. Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery. ACS Appl. Mater. Interfaces 2016, 8, 7811–7817.

42

Sun, Y. M.; Hu, X. L.; Luo, W.; Xia, F. F.; Huang, Y. H. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 2013, 23, 2436–2444.

43

Lee, S. M.; Choi, S. H.; Kang, Y. C. Electrochemical properties of tin oxide flake/reduced graphene oxide/carbon composite powders as anode materials for lithium-ion batteries. Chem. —Eur. J. 2014, 20, 15203–15207.

44

Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L. L.; Cheng, H. M. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template- free self-assembly. Adv. Funct. Mater. 2011, 21, 1717–1722.

File
nr-10-9-3178_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 November 2016
Revised: 12 February 2017
Accepted: 13 February 2017
Published: 01 June 2017
Issue date: September 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by a National Research Foundation of Republic of Korea (NRF) grant funded by the Korea government (MEST) (No. NRF- 2015R1A2A1A15056049).

Return