Journal Home > Volume 10 , Issue 9

Recently, flexible electrodes with biaxial/omnidirectional stretchability have attracted significant attention. However, most existing pliable electrode materials can be only stretched in one direction. In this work, an unexpected isotropic van der Waals (vdW) heterostructure is proposed, based on the assembly of two- dimensional crystals of anisotropic black phosphorene (BP) and transition metal carbide (TiC2). Using vdW-corrected density functional theory calculations, the BP/TiC2 vdW heterostructure was predicted to have excellent structural and mechanical stability, superior electrical conductivity, omnidirectional flexibility, and a high Li storage capacity. We have unraveled the physical origin of the excellent stability, as well as the Li adsorption preferences of the lithiated heterostructure, based on a three-step analysis of the stability of the Li-adsorption processes. In addition, the BP/TiC2 vdW heterostructure can also be applied as the anode material for flexible Na-ion batteries because of its high Na storage capacity and strong Na binding. However, compared with Na adsorption, the capacity is higher, and the adsorption energy is more negative for Li adsorption. Our findings provide valuable insights into the exploration of a rich variety of vdW heterostructures for next-generation flexible energy storage devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications

Show Author's information Qiong Peng1,2Kangming Hu1,2Baisheng Sa1,2,3( )Jian Zhou3Bo Wu1,2( )Xianhua Hou4Zhimei Sun3( )
Multiscale Computational Materials Facility, College of Materials Science and Engineering Fuzhou UniversityFuzhou 350100 China
Key Laboratory of Eco-Materials Advanced Technology (Fuzhou University) Fujian Province UniversityFuzhou 350100 China
School of Materials Science and Engineering, and Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science Beihang UniversityBeijing 100191 China
Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics and Telecommunication Engineering South China Normal UniversityGuangzhou 510006 China

Abstract

Recently, flexible electrodes with biaxial/omnidirectional stretchability have attracted significant attention. However, most existing pliable electrode materials can be only stretched in one direction. In this work, an unexpected isotropic van der Waals (vdW) heterostructure is proposed, based on the assembly of two- dimensional crystals of anisotropic black phosphorene (BP) and transition metal carbide (TiC2). Using vdW-corrected density functional theory calculations, the BP/TiC2 vdW heterostructure was predicted to have excellent structural and mechanical stability, superior electrical conductivity, omnidirectional flexibility, and a high Li storage capacity. We have unraveled the physical origin of the excellent stability, as well as the Li adsorption preferences of the lithiated heterostructure, based on a three-step analysis of the stability of the Li-adsorption processes. In addition, the BP/TiC2 vdW heterostructure can also be applied as the anode material for flexible Na-ion batteries because of its high Na storage capacity and strong Na binding. However, compared with Na adsorption, the capacity is higher, and the adsorption energy is more negative for Li adsorption. Our findings provide valuable insights into the exploration of a rich variety of vdW heterostructures for next-generation flexible energy storage devices.

Keywords: first-principles calculations, van der Waals heterostructure, omnidirectional stretchability, Li adsorption, flexible anode

References(63)

1

Yu, J. L.; Lu, W. B.; Pei, S. P.; Gong, K.; Wang, L. Y.; Meng, L. H.; Huang, Y. D.; Smith, J. P.; Booksh, K. S.; Li, Q. W. et al. Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano 2016, 10, 5204–5211.

2

Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

3

Hao, C. X.; Yang, B. C.; Wen, F. S.; Xiang, J. Y.; Li, L.; Wang, W. H.; Zeng, Z. M.; Xu, B.; Zhao, Z. S.; Liu, Z. Y. et al. Flexible all-solid-state supercapacitors based on liquid- exfoliated black-phosphorus nanoflakes. Adv. Mater. 2016, 28, 3194–3201.

4

Zhou, G. M.; Li, F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.

5

Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.

6

Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Recent development of carbon materials for Li ion batteries. Carbon 2000, 38, 183–197.

7

Zhang, W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196, 13–24.

8

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

9

Van Noorden, R. The rechargeable revolution: A better battery. Nature 2014, 507, 26–28.

10

Nagaraju, G.; Ko, Y. H.; Cha, S. M.; Im, S. H.; Yu, J. S. A facile one-step approach to hierarchically assembled core- shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage. Nano Res. 2016, 9, 1507–1522.

11

Sun, J. Y.; Chen, Y. B.; Cai, X.; Ma, B. J.; Chen, Z. L.; Priydarshi, M. K.; Chen, K.; Gao, T.; Song, X. J.; Ji, Q. Q. et al. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Res. 2015, 8, 3496–3504.

12

Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.

13

Hao, C. X.; Wen, F. S.; Xiang, J. Y.; Yuan, S. J.; Yang, B. C.; Li, L.; Wang, W. H.; Zeng, Z. M.; Wang, L. M.; Liu, Z. Y. et al. Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications. Adv. Funct. Mater. 2016, 26, 2016–2024.

14

Guo, Z. L.; Zhou, J.; Si, C.; Sun, Z. M. Flexible two- dimensional Tin+1Cn(n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys. Chem. Chem. Phys. 2015, 17, 15348–15354.

15

Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y.; Yu, X. Q.; Nam, K. W.; Yang, X. Q.; Kolesnikov, A. I.; Kent, P. R. C. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 2014, 136, 6385–6394.

16

Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nano­composites. Energy Environ. Sci. 2014, 7, 209–231.

17

Sa, B. S.; Sun, Z. M. Electron interactions and Dirac fermions in graphene-Ge2Sb2Te5 superlattices. J. Appl. Phys. 2014, 115, 233714.

18

Jiao, Y. C.; Han, D. D.; Ding, Y.; Zhang, X. F.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Fabrication of three- dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties. Nat. Commun. 2015, 6, 6420.

19

Jiang, H.; Ren, D. Y.; Wang, H. F.; Hu, Y. J.; Guo, S. J.; Yuan, H. Y.; Hu, P. J.; Zhang, L.; Li, C. Z. 2D monolayer MoS2-carbon interoverlapped superstructure: Engineering ideal atomic interface for lithium ion storage. Adv. Mater. 2015, 27, 3687–3695.

20

Peng, Q.; Wang, Z. Y.; Sa, B. S.; Wu, B.; Sun, Z. M. Blue phosphorene/MS2 (M = Nb, Ta) heterostructures as promising flexible anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 13449–13457.

21

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H.-C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

22

Zhao, T. S.; Zhang, S. H.; Guo, Y. G.; Wang, Q. TiC2: A new two-dimensional sheet beyond MXenes. Nanoscale 2016, 8, 233–242.

23

Wei, Q.; Peng, X. H. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 2014, 104, 251915.

24

Sa, B. S.; Li, Y.-L.; Sun, Z. M.; Qi, J. S.; Wen, C. L.; Wu, B. The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene. Nanotechnology 2015, 26, 215205.

25

Wang, Y. L.; Cong, C. X.; Fei, R. X.; Yang, W. H.; Chen, Y.; Cao, B. C.; Yang, L.; Yu, T. Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 2015, 8, 3944–3953.

26

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

27

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

28

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

29

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

30

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865– 3868.

31

Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. : Condens. Matter 2010, 22, 022201.

32

Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

33

Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908.

34

Liao, J. M.; Sa, B. S.; Zhou, J.; Ahuja, R.; Sun, Z. M. Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN(GaN) heterostructures. J. Phys. Chem. C 2014, 118, 17594–17599.

35

Peng, Q.; Wang, Z. Y.; Sa, B. S.; Wu, B.; Sun, Z. M. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep. 2016, 6, 31994.

36

Liu, F.; Ming, P. B.; Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 2007, 76, 064120.

37

Peng, X. H.; Wei, Q.; Copple, A. Strain-engineered direct- indirect band gap transition and its mechanism in two- dimensional phosphorene. Phys. Rev. B 2014, 90, 085402.

38

Xie, Y.; Dall'Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L.; Kent, P. R. C. Prediction and characterization of MXene nanosheet anodes for non-lithium- ion batteries. ACS Nano 2014, 8, 9606–9615.

39

Liu, Y. Y.; Merinov, B. V.; Goddard, W. A., III. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl. Acad. Sci. USA 2016, 113, 3735–3739.

40

Brown, A.; Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Cryst. 1965, 19, 684–685.

41

Sa, B. S.; Sun, Z. M.; Wu, B. The development of two dimensional group Ⅳ chalcogenides, blocks for van der Waals heterostructures. Nanoscale 2016, 8, 1169–1178.

42

Guan, J.; Zhu, Z.; Tománek, D. Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study. Phys. Rev. Lett. 2014, 113, 046804.

43

Sa, B. S.; Li, Y.-L.; Qi, J. S.; Ahuja, R.; Sun, Z. M. Strain engineering for phosphorene: The potential application as a photocatalyst. J. Phys. Chem. C 2014, 118, 26560–26568.

44

Peng, X.; Peng, L. L.; Wu, C. Z.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303–3323.

45

Sun, Z. M.; Ahuja, R.; Lowther, J. E. Mechanical properties of vanadium carbide and a ternary vanadium tungsten carbide. Solid State Commun. 2010, 150, 697–700.

46

Sa, B. S.; Zhou, J.; Ahuja, R.; Sun, Z. M. First-principles investigations of electronic and mechanical properties for stable Ge2Sb2Te5 with van der Waals corrections. Comput. Mater. Sci. 2014, 82, 66–69.

47

Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.; Christensen, N. E.; Svane, A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 2012, 86, 035105.

48

Guo, Z. L.; Miao, N. H.; Zhou, J.; Sa, B. S.; Sun, Z. M. Strain-mediated Type-Ⅰ/Type-Ⅱ transition in MXene/blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. J. Mater. Chem. C 2017, 5, 978–984.

49

Jiang, J. W.; Park, H. S. Negative Poisson's ratio in single- layer black phosphorus. Nat. Commun. 2014, 5, 4727.

50

Du, Y. C.; Maassen, J.; Wu, W. R.; Luo, Z.; Xu, X. F.; Ye, P. D. Auxetic black phosphorus: A 2D material with negative Poisson's ratio. Nano Lett. 2016, 16, 6701–6708.

51

Li, J. W.; Medhekar, N. V.; Shenoy, V. B. Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides. J. Phys. Chem. C 2013, 117, 15842–15848.

52

Guo, Z. L.; Sa, B. S.; Pathak, B.; Zhou, J.; Ahuja, R.; Sun, Z. M. Band gap engineering in huge-gap semiconductor SrZrO3 for visible-light photocatalysis. Int. J. Hydrogen Energy 2014, 39, 2042–2048.

53

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

54

Andrew, R. C.; Mapasha, R. E.; Ukpong, A. M.; Chetty, N. Mechanical properties of graphene and boronitrene. Phys. Rev. B 2012, 85, 125428.

55

Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

56

Li, Q. F.; Duan, C. G.; Wan, X. G.; Kuo, J. L. Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus. J. Phys. Chem. C 2015, 119, 8662–8670.

57

Deng, J. K.; Chang, Z. Y.; Zhao, T.; Ding, X. D.; Sun, J.; Liu, J. Z. Electric field induced reversible phase transition in Li doped phosphorene: Shape memory effect and superelasticity. J. Am. Chem. Soc. 2016, 138, 4772–4778.

58

Park, C. M.; Sohn, H. J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 2007, 19, 2465–2468.

59

Csonka, G. I.; Perdew, J. P.; Ruzsinszky, A.; Philipsen, P. H. T.; Lebègue, S.; Paier, J.; Vydrov, O. A.; Ángyán, J. G. Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 2009, 79, 155107.

60

Zhou, L. J.; Hou, Z. F.; Wu, L. M. First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C 2012, 116, 21780–21787.

61

Tritsaris, G. A.; Kaxiras, E.; Meng, S.; Wang, E. G. Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett. 2013, 13, 2258–2263.

62

Guo, G.-C.; Wang, D.; Wei, X.-L.; Zhang, Q.; Liu, H.; Lau, W.-M.; Liu, L.-M. First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. J. Phys. Chem. Lett. 2015, 6, 5002–5008.

63

Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657.

File
nr-10-9-3136_ESM.pdf (913.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 September 2016
Revised: 01 February 2017
Accepted: 13 February 2017
Published: 19 May 2017
Issue date: September 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (Materials Gnome Initiative), the National Natural Science Foundation of China (Nos. 61504028 and 61274005), the National Natural Science Founda­tion for Distinguished Young Scientists of China (No. 51225205), the Research Fund for the Doctoral Program of Higher Education of China (PhD supervisor) (No. 20133514110006), the Natural Science Foundation of Fujian Province (Nos. 2014J01176 and 2016J01216) and the Science Foundation of Department of Education of Fujian Province (No. JA15067).

Return