Journal Home > Volume 10 , Issue 9

Theranostic nanomedicine, which uses both imaging and therapeutic components for simultaneous disease diagnosis and treatment, is expected to improve patient treatment safety and outcomes by offering a more personalized approach to medicine. However, the poor reproducibilities of nanomedicines synthesized for optimized bioavailability and their potential toxicity are impeding clinical development. Moreover, milligram-scale synthetic methods are often inconsistent when transferred to mass production. To address these challenges, a facile, room temperature, aqueous phase synthesis of nanotheranostic agents using clinically validated mesoporous silica and naturally derived polydopamine has been developed. Since the synthetic procedure is simple and robust, and requires only simple mixing under ambient conditions, excellent batch-to-batch consistency has been achieved. As a result, this process can be easily scaled-up to produce gram-scale batches with physicochemical parameters similar to those of materials synthesized in smaller batches. The resulting nanotheranostic agents exhibit efficient X-ray tomography and T1-weighted magnetic resonance image contrast enhancing abilities due to their chemically ligated, benign Bi3+ and Fe3+ ions. Furthermore, the inclusion of a polydopamine shell makes the nanoparticle surface easy to functionalize and renders these materials highly efficient as photothermal agents. These nanotheranostic agents are suitable for mass production and for potential applications in multimodal imaging-guided therapy in clinical settings.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Gram-scale synthesis of nanotherapeutic agents for CT/T1-weighted MRI bimodal imaging guided photothermal therapy

Show Author's information Xianguang Ding1Xiaoxia Hao1Dongdong Fu1Mengxin Zhang1Tian Lan1Chunyan Li1Renjun Huang2Zhijun Zhang1Yonggang Li2Qiangbin Wang1Jiang Jiang1( )
i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of SciencesSuzhou 215123 China
Department of Radiology The First Affiliated Hospital of Soochow UniversitySuzhou 215006 China

Abstract

Theranostic nanomedicine, which uses both imaging and therapeutic components for simultaneous disease diagnosis and treatment, is expected to improve patient treatment safety and outcomes by offering a more personalized approach to medicine. However, the poor reproducibilities of nanomedicines synthesized for optimized bioavailability and their potential toxicity are impeding clinical development. Moreover, milligram-scale synthetic methods are often inconsistent when transferred to mass production. To address these challenges, a facile, room temperature, aqueous phase synthesis of nanotheranostic agents using clinically validated mesoporous silica and naturally derived polydopamine has been developed. Since the synthetic procedure is simple and robust, and requires only simple mixing under ambient conditions, excellent batch-to-batch consistency has been achieved. As a result, this process can be easily scaled-up to produce gram-scale batches with physicochemical parameters similar to those of materials synthesized in smaller batches. The resulting nanotheranostic agents exhibit efficient X-ray tomography and T1-weighted magnetic resonance image contrast enhancing abilities due to their chemically ligated, benign Bi3+ and Fe3+ ions. Furthermore, the inclusion of a polydopamine shell makes the nanoparticle surface easy to functionalize and renders these materials highly efficient as photothermal agents. These nanotheranostic agents are suitable for mass production and for potential applications in multimodal imaging-guided therapy in clinical settings.

Keywords: mesoporous silica, polydopamine, mass production, multimodal imaging, theranostic

References(65)

1

Janib, S. M.; Moses, A. S.; MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 2010, 62, 1052–1063.

2

MacKay, J. A.; Li, Z. B. Theranostic agents that co-deliver therapeutic and imaging agents? Adv. Drug Deliv. Rev. 2010, 62, 1003–1004.

3

Chen, X. Y.; Gambhir, S. S.; Cheon, J. Theranostic nano­medicine. Acc. Chem. Res. 2011, 44, 841–841.

4

Cheng, L.; Yang, K.; Li, Y. G.; Chen, J. H.; Wang, C.; Shao, M. W.; Lee, S.-T.; Liu, Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem., Int. Ed. 2011, 50, 7385–7390.

5

Deng, H.; Dai, F. Y.; Ma, G. H.; Zhang, X. Theranostic gold nanomicelles made from biocompatible comb-like polymers for thermochemotherapy and multifunctional imaging with rapid clearance. Adv. Mater. 2015, 27, 3645–3653.

6

McQuade, C.; Al Zaki, A.; Desai, Y.; Vido, M.; Sakhuja, T.; Cheng, Z. L.; Hickey, R. J.; Joh, D.; Park, S.-J.; Kao, G. et al. A multifunctional nanoplatform for imaging, radiotherapy, and the prediction of therapeutic response. Small 2015, 11, 834–843.

7

Tian, Q. W.; Hu, J. Q.; Zhu, Y. H.; Zou, R. J.; Chen, Z. G.; Yang, S. P.; Li, R. W.; Su, Q. Q.; Han, Y.; Liu, X. G. Sub-10 nm Fe3O4@Cu2−xS core–shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc. 2013, 135, 8571–8577.

8

Fan, Q. L.; Cheng, K.; Hu, X.; Ma, X. W.; Zhang, R. P.; Yang, M.; Lu, X. M.; Xing, L.; Huang, W.; Gambhir, S. S., et al. Transferring biomarker into molecular probe: Melanin nanoparticle as a naturally active platform for multimodality imaging. J. Am. Chem. Soc. 2014, 136, 15185–15194.

9

Xiao, Q. F.; Zheng, X. P.; Bu, W. B.; Ge, W. Q.; Zhang, S. J.; Chen, F.; Xing, H. Y.; Ren, Q. G.; Fan, W. P.; Zhao, K. L. et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/ photothermal synergistic therapy. J. Am. Chem. Soc. 2013, 135, 13041–13048.

10

Wang, Y.; Gu, H. C. Core–shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv. Mater. 2015, 27, 576–585.

11

Yildirimer, L.; Thanh, N. T. K.; Loizidou, M.; Seifalian, A. M. Toxicology and clinical potential of nanoparticles. Nano Today 2011, 6, 585–607.

12

Kirsh, R.; Hood, S.; Brook, C.; Gilmartin, A.; Dell'orco, P.; Meek, T. Will nanomedicine deliver on its promise of changing therapeutics or remain an interesting and important research tool in cell biology and physiology? Int. J. Pharm. 2013, 454, 530–531.

13

Venditto, V. J.; Szoka, F. C., Jr. Cancer nanomedicines: So many papers and so few drugs! Adv. Drug Deliv. Rev. 2013, 65, 80–88.

14

Holzapfel, B. M.; Reichert, J. C.; Schantz, J.-T.; Gbureck, U.; Rackwitz, L.; Nöth, U.; Jakob, F.; Rudert, M.; Groll, J.; Hutmacher, D. W. How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Deliv. Rev. 2013, 65, 581–603.

15

Bazile, D. V. Nanotechnologies in drug delivery—An industrial perspective. J. Drug Deliv. Sci. Technol. 2014, 24, 12–21.

16

Min, Y. Z.; Caster, J. M.; Eblan, M. J.; Wang, A. Z. Clinical translation of nanomedicine. Chem. Rev. 2015, 115, 11147–11190.

17

Wei, A.; Mehtala, J. G.; Patri, A. K. Challenges and opportunities in the advancement of nanomedicines. J. Controlled Release 2012, 164, 236–246.

18

Marre, S.; Jensen, K. F. Synthesis of micro and nano­structures in microfluidic systems. Chem. Soc. Rev. 2010, 39, 1183–1202.

19

Valencia, P. M.; Farokhzad, O. C.; Karnik, R.; Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 2012, 7, 623–629.

20

Zhang, L.; Xia, Y. N. Scaling up the production of colloidal nanocrystals: Should we increase or decrease the reaction volume? Adv. Mater. 2014, 26, 2600–2606.

21

Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered nanoparticles for drug delivery. J. Controlled Release 2013, 166, 182–194.

22

Winnik, F. M.; Maysinger, D. Quantum dot cytotoxicity and ways to reduce it. Acc. Chem. Res. 2013, 46, 672–680.

23

Cheng, Z. L.; Al Zaki, A.; Hui, J. Z.; Muzykantov, V. R.; Tsourkas, A. Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science 2012, 338, 903–910.

24

Li, C. A targeted approach to cancer imaging and therapy. Nat. Mater. 2014, 13, 110–115.

25

Tang, L.; Cheng, J. J. Nonporous silica nanoparticles for nanomedicine application. Nano Today 2013, 8, 290–312.

26

Yang, P. P.; Gai, S. L.; Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 2012, 41, 3679–3698.

27

Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C.-W.; Lin, V. S. Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278–1288.

28

Mamaeva, V.; Sahlgren, C.; Lindén, M. Mesoporous silica nanoparticles in medicine—Recent advances. Adv. Drug Deliv. Rev. 2013, 65, 689–702.

29

Yang, S.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; Gu, F.; Xie, J. P.; Lu, J. M. Hollow mesoporous silica nanocarriers with multifunctional capping agents for in vivo cancer imaging and therapy. Small 2016, 12, 360–370.

30

Chiang, Y.-D.; Lian, H.-Y.; Leo, S.-Y.; Wang, S.-G.; Yamauchi, Y.; Wu, K. C. W. Controlling particle size and structural properties of mesoporous silica nanoparticles using the taguchi method. J. Phys. Chem. C 2011, 115, 13158–13165.

31

Malgras, V.; Ji, Q. M.; Kamachi, Y.; Mori, T.; Shieh, F.-K.; Wu, K. C. W.; Ariga, K.; Yamauchi, Y. Templated synthesis for nanoarchitectured porous materials. Bull. Chem. Soc. Jpn. 2015, 88, 1171–1200.

32

Wu, K. C. W.; Yamauchi, Y. Controlling physical features of mesoporous silica nanoparticles (MSNs) for emerging applications. J. Mater. Chem. 2012, 22, 1251–1256.

33

Yang, G. B.; Gong, H.; Qian, X. X.; Tan, P. L.; Li, Z. W.; Liu, T.; Liu, J. J.; Li, Y. Y.; Liu, Z. Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer. Nano Res. 2015, 8, 751–764.

34

Liu, T.; Wu, G. Y.; Cheng, J. J.; Lu, Q.; Yao, Y. J.; Liu, Z. J.; Zhu, D. C.; Zhou, J.; Xu, J. R.; Zhu, J. et al. Multifunctional lymph-targeted platform based on Mn@mSiO2 nanocom­posites: Combining PFOB for dual-mode imaging and DOX for cancer diagnose and treatment. Nano Res. 2016, 9, 473–489.

35

Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.

36

Ambrogio, M. W.; Thomas, C. R.; Zhao, Y.-L.; Zink, J. I.; Stoddart, J. F. Mechanized silica nanoparticles: A new frontier in theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 903–913.

37

Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous silica nano­particles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534.

38

Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S. et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest. 2011, 121, 2768–2780.

39

Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

40

Xu, C. J.; Xu, K. M.; Gu, H. W.; Zheng, R. K.; Liu, H.; Zhang, X. X.; Guo, Z. H.; Xu, B. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 9938–9939.

41

Hong, S.; Kim, K. Y.; Wook, H. J.; Park, S. Y.; Lee, K. D.; Lee, D. Y.; Lee, H. Attenuation of the in vivo toxicity of biomaterials by polydopamine surface modification. Nano­medicine 2011, 6, 793–801.

42

Lee, H.; Rho, J.; Messersmith, P. B. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv. Mater. 2009, 21, 431–434.

43

Ju, K.-Y.; Lee, J. W.; Im, G. H.; Lee, S.; Pyo, J.; Park, S. B.; Lee, J. H.; Lee, J.-K. Bio-inspired, melanin-like nano­particles as a highly efficient contrast agent for T1-weighted magnetic resonance imaging. Biomacromolecules 2013, 14, 3491–3497.

44

Miao, Z.-H.; Wang, H.; Yang, H. J.; Li, Z.-L.; Zhen, L.; Xu, C.-Y. Intrinsically Mn2+-chelated polydopamine nano­particles for simultaneous magnetic resonance imaging and photothermal ablation of cancer cells. ACS Appl. Mater. Interfaces 2015, 7, 16946–16952.

45

Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353–1359.

46

Lin, L.-S.; Cong, Z.-X.; Cao, J.-B.; Ke, K.-M.; Peng, Q.-L.; Gao, J. H.; Yang, H.-H.; Liu, G.; Chen, X. Y. Multifunctional Fe3O4@polydopamine core–shell nanocomposites for intra­cellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 2014, 8, 3876–3883.

47

Zheng, Q. S.; Lin, T. R.; Wu, H. Y.; Guo, L. Q.; Ye, P. R.; Hao, Y. L.; Guo, Q. Q.; Jiang, J. Z.; Fu, F. F.; Chen, G. N. Mussel-inspired polydopamine coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release. Int. J. Pharm. 2014, 463, 22–26.

48

Chang, D. F.; Gao, Y. F.; Wang, L. J.; Liu, G.; Chen, Y. H.; Wang, T.; Tao, W.; Mei, L.; Huang, L. Q.; Zeng, X. W. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. J. Colloid Interface Sci. 2016, 463, 279–287.

49

Ai, K. L.; Liu, Y. L.; Liu, J. H.; Yuan, Q. H.; He, Y. Y.; Lu, L. H. Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater. 2011, 23, 4886–4891.

50

Brown, A. L.; Naha, P. C.; Benavides-Montes, V.; Litt, H. I.; Goforth, A. M.; Cormode, D. P. Synthesis, X-ray opacity, and biological compatibility of ultra-high payload elemental bismuth nanoparticle X-ray contrast agents. Chem. Mater. 2014, 26, 2266–2274.

51

Rabin, O.; Manuel Perez, J.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 2006, 5, 118–122.

52

Wang, S. G.; Li, X.; Chen, Y.; Cai, X. J.; Yao, H. L.; Gao, W.; Zheng, Y. Y.; An, X.; Shi, J. L.; Chen, H. R. A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy. Adv. Mater. 2015, 27, 2775–2782.

53

Liu, J.; Zheng, X. P.; Yan, L.; Zhou, L. J.; Tian, G.; Yin, W. Y.; Wang, L. M.; Liu, Y.; Hu, Z. B.; Gu, Z. J. et al. Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano 2015, 9, 696–707.

54

Lee, N.; Choi, S. H.; Hyeon, T. Nano-sized CT contrast agents. Adv. Mater. 2013, 25, 2641–2660.

55

Peng, Y.-K.; Liu, C.-L.; Chen, H.-C.; Chou, S.-W.; Tseng, W.-H.; Tseng, Y.-J.; Kang, C.-C.; Hsiao, J.-K.; Chou, P.-T. Antiferromagnetic iron nanocolloids: A new generation in vivo T1 MRI contrast agent. J. Am. Chem. Soc. 2013, 135, 18621–18628.

56

Yang, Z. Z.; Ding, X. G.; Jiang, J. Facile synthesis of magnetic–plasmonic nanocomposites as T1 MRI contrast enhancing and photothermal therapeutic agents. Nano Res. 2016, 9, 787–799.

57

Tsai, M.-F.; Chang, S.-H. G.; Cheng, F.-Y.; Shanmugam, V.; Cheng, Y.-S.; Su, C.-H.; Yeh, C.-S. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 2013, 7, 5330–5342.

58

Ding, X. G.; Liow, C. H.; Zhang, M. X.; Huang, R. J.; Li, C. Y.; Shen, H.; Liu, M. Y.; Zou, Y.; Gao, N.; Zhang, Z. J. et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 2014, 136, 15684–15693.

59

Park, J.; Brust, T. F.; Lee, H. J.; Lee, S. C.; Watts, V. J.; Yeo, Y. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano 2014, 8, 3347–3356.

60

Desgrosellier, J. S.; Cheresh, D. A. Integrins in cancer: Biological implications and therapeutic opportunities. Nat. Rev. Cancer 2010, 10, 9–22.

61
Rüegg, C.; Alghisi, G. C. Vascular integrins: Therapeutic and imaging targets of tumor angiogenesis. In Angiogenesis Inhibition. Liersch, R.; Berdel, W. E.; Kessler, T., Eds.; Springer: Berlin Heidelberg, 2010; pp 83–101.https://doi.org/10.1007/978-3-540-78281-0_6
DOI
62

Miura, Y.; Takenaka, T.; Toh, K.; Wu, S.; Nishihara, H.; Kano, M. R.; Ino, Y.; Nomoto, T.; Matsumoto, Y.; Koyama, H. et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood–brain tumor barrier. ACS Nano 2013, 7, 8583–8592.

63

Dane, K. Y.; Gottstein, C.; Daugherty, P. S. Cell surface profiling with peptide libraries yields ligand arrays that classify breast tumor subtypes. Mol. Cancer Ther. 2009, 8, 1312–1318.

64

Bangari, D. S.; Mittal, S. K. Porcine adenovirus serotype 3 internalization is independent of CAR and αvβ3 or αvβ5 integrin. Virology 2005, 332, 157–166.

65

Danhier, F.; Le Breton, A.; Préat, V. RGD-based strategies to target Alpha(v)Beta(3) integrin in cancer therapy and diagnosis. Mol. Pharmaceutics 2012, 9, 2961–2973.

File
nr-10-9-3124_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 September 2016
Revised: 26 January 2017
Accepted: 11 February 2017
Published: 18 May 2017
Issue date: September 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 21473243).

Return