Journal Home > Volume 10 , Issue 12

The discharge and charge mechanisms of rechargeable Li-O2 batteries have been the subject of extensive investigation recently. However, they are not fully understood yet. Here we report a systematic study of the morphological transition of Li2O2 from a single crystalline structure to a toroid like particle during the discharge–charge cycle, with the help of a theoretical model to explain the evolution of the Li2O2 at different stages of this process. The model suggests that the transition starts in the first monolayer of Li2O2, and is subsequently followed by a transition from particle growth to film growth if the applied current exceeds the exchange current for the oxygen reduction reaction in a Li-O2 cell. Furthermore, a sustainable mass transport of the diffusive active species (e.g., O2 and Li+) and evolution of the underlying interfaces are critical to dictate desirable oxygen reduction (discharge) and evolution (charge) reactions in the porous carbon electrode of a Li-O2 cell.


menu
Abstract
Full text
Outline
About this article

Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study

Show Author's information Xiangyi Luo1,§Rachid Amine2,3,§Kah Chun Lau2,4,§Jun Lu1( )Chun Zhan1Larry A. Curtiss2Said Al Hallaj3Brian P. Chaplin3Khalil Amine1( )
Chemical Sciences and Engineering DivisionArgonne National Laboratory9700 South Cass AvenueLemontIL60439USA
Materials Science DivisionArgonne National Laboratory9700 South Cass AvenueLemontIL60439USA
Department of Chemical EngineeringUniversity of Illinois at Chicago810 S. ClintonChicagoIL60607USA
Department of Physics and AstronomyCalifornia State University Northridge18111 Nordhoff StreetNorthridgeCA91330USA

§ Xiangyi Luo, Rachid Amine and Kah Chun Lau contributed equally to this work.

Abstract

The discharge and charge mechanisms of rechargeable Li-O2 batteries have been the subject of extensive investigation recently. However, they are not fully understood yet. Here we report a systematic study of the morphological transition of Li2O2 from a single crystalline structure to a toroid like particle during the discharge–charge cycle, with the help of a theoretical model to explain the evolution of the Li2O2 at different stages of this process. The model suggests that the transition starts in the first monolayer of Li2O2, and is subsequently followed by a transition from particle growth to film growth if the applied current exceeds the exchange current for the oxygen reduction reaction in a Li-O2 cell. Furthermore, a sustainable mass transport of the diffusive active species (e.g., O2 and Li+) and evolution of the underlying interfaces are critical to dictate desirable oxygen reduction (discharge) and evolution (charge) reactions in the porous carbon electrode of a Li-O2 cell.

Keywords: nanocomposite, electrocatalyst, rechargeable Li-O2 battery, lithium peroxide

References(33)

1

Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

2

Black, R.; Adams, B.; Nazar, L. F. Non-aqueous and hybrid Li-O2 batteries. Adv. Energy Mater. 2012, 2, 801–815.

3

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. -M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

4

Lu, J.; Li, L.; Park, J. -B.; Sun, Y. -K.; Wu, F.; Amine, K. Aprotic and aqueous Li–O2 batteries. Chem. Rev. 2014, 114, 5611–5640.

5

Ma, Z.; Yuan, X. X.; Li, L.; Ma, Z. -F.; Wilkinson, D. P.; Zhang, L.; Zhang, J. J. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ. Sci. 2015, 8, 2144–2198.

6

Jung, H. -G.; Kim, H. -S.; Park, J. -B.; Oh, I. -H.; Hassoun, J.; Yoon, C. S.; Scrosati, B.; Sun, Y. -K. A transmission electron microscopy study of the electrochemical process of lithium–oxygen cells. Nano Lett. 2012, 12, 4333–4335.

7

Radin, M. D.; Siegel, D. J. Charge transport in lithium peroxide: Relevance for rechargeable metal-air batteries. Energy Environ. Sci. 2013, 6, 2370–2379.

8

Varley, J. B.; Viswanathan, V.; Nørskov, J. K.; Luntz, A. C. Lithium and oxygen vacancies and their role in Li2O2 charge transport in Li-O2 batteries. Energy Environ. Sci. 2014, 7, 720–727.

9

Zhang, Z. C.; Lu, J.; Assary, R. S.; Du, P.; Wang, H. H.; Sun, Y. K.; Qin, Y.; Lau, K. C.; Greeley, J.; Redfern, P. C. et al. Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J. Phys. Chem. C 2011, 115, 25535–25542.

10

Xu, D.; Wang, Z. -L.; Xu, J. -J.; Zhang, L. -L.; Wang, L. -M.; Zhang, X. -B. A stable sulfone based electrolyte for high performance rechargeable Li-O2 batteries. Chem. Commun. 2012, 48, 11674–11676.

11

Walker, W.; Giordani, V.; Uddin, J.; Bryantsev, V. S.; Chase, G. V.; Addison, D. A rechargeable Li–O2 battery using a lithium nitrate/N, N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 2013, 135, 2076–2079.

12

Younesi, R.; Norby, P.; Vegge, T. A new look at the stability of dimethyl sulfoxide and acetonitrile in Li-O2 batteries. ECS Electrochem. Lett. 2014, 3, A15–A18.

13

Du, P.; Lu, J.; Lau, K. C.; Luo, X. Y.; Bareño, J.; Zhang, X. Y.; Ren, Y.; Zhang, Z. C.; Curtiss, L. A.; Sun, Y. -K. et al. Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries. Phys. Chem. Chem. Phys. 2013, 15, 5572–5581.

14

Débart, A.; Paterson, A. J.; Bao, J. L.; Bruce, P. G. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 4521–4524.

15

Truong, T. T.; Liu, Y. Z.; Ren, Y.; Trahey, L.; Sun, Y. G. Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium–air batteries. ACS Nano 2012, 6, 8067–8077.

16

Lei, Y.; Lu, J.; Luo, X. Y.; Wu, T. P.; Du, P.; Zhang, X. Y.; Ren, Y.; Wen, J. G.; Miller, D. J.; Miller, J. T. et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: Application for rechargeable lithium–O2 battery. Nano Lett. 2013, 13, 4182–4189.

17

Luo, X. Y.; Piernavieja-Hermida, M.; Lu, J.; Wu, T. P.; Wen, J. G.; Ren, Y.; Miller, D.; Fang, Z. Z.; Lei, Y.; Amine, K. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: An effective electrochemical catalyst for Li-O2 battery. Nanotechnology 2015, 26, 164003.

18

Liu, Q. C.; Jiang, Y. S.; Xu, J. J.; Xu, D.; Chang, Z. W.; Yin, Y. B.; Liu, W. Q.; Zhang, X. B. Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano Res. 2015, 8, 576–583.

19

Luo, X. Y.; Lu, J.; Sohm, E.; Ma, L.; Wu, T. P.; Wen, J. G.; Qiu, D. T.; Xu, Y. K.; Ren, Y.; Miller, D. J. et al. Uniformly dispersed FeOx atomic clusters by pulsed arc plasma deposition: An efficient electrocatalyst for improving the performance of Li-O2 battery. Nano Res. 2016, 9, 1913–1920.

20

Wang, Y.; Huang, W.; Si, C. H.; Zhang, J.; Yan, X. J.; Jin, C. H.; Ding, Y.; Zhang, Z. H. Self-supporting nanoporous gold-palladium overlayer bifunctional catalysts toward oxygen reduction and evolution reactions. Nano Res. 2016, 9, 3781–3794.

21

Lu, J.; Lei, Y.; Lau, K. C.; Luo, X. Y.; Du, P.; Wen, J. G.; Assary, R. S.; Das, U.; Miller, D. J.; Elam, J. W. et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 2013, 4, 2383.

22

Park, J. -B.; Lee, J.; Yoon, C. S.; Sun, Y. -K. Ordered mesoporous carbon electrodes for Li–O2 batteries. ACS Appl. Mater. Interfaces 2013, 5, 13426–13431.

23

Nie, H. J.; Zhang, Y. N.; Li, J.; Zhou, W.; Lai, Q. Z.; Liu, T.; Zhang, H. M. Synthesis of a meso-macro hierarchical porous carbon material for improvement of O2 diffusivity in Li-O2 batteries. RSC Adv. 2014, 4, 17141–17145.

24

Shui, J. L.; Du, F.; Xue, C. M.; Li, Q.; Dai, L. M. Vertically aligned n-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li–O2 batteries. ACS Nano 2014, 8, 3015–3022.

25

Ma, L.; Luo, X. Y.; Kropf, A. J.; Wen, J. G.; Wang, X. P.; Lee, S.; Myers, D. J.; Miller, D.; Wu, T. P.; Lu, J. et al. Insight into the catalytic mechanism of bimetallic platinum– copper core–shell nanostructures for nonaqueous oxygen evolution reactions. Nano Lett. 2016, 16, 781–785.

26

Zhong, X.; Papandrea, B.; Xu, Y. X.; Lin, Z. Y.; Zhang, H.; Liu, Y.; Huang, Y.; Duan, X. F. Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions. Nano Res. 2017, 10, 472–482.

27

Mitchell, R. R.; Gallant, B. M.; Thompson, C. V.; Shao- Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ. Sci. 2011, 4, 2952–2958.

28

Mitchell, R. R.; Gallant, B. M.; Shao-Horn, Y.; Thompson, C. V. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J. Phys. Chem. Lett. 2013, 4, 1060–1064.

29

Luo, X.; Wu, T.; Lu, J.; Amine, K. Protocol of electrochemical test and characterization of aprotic Li-O2 battery. J. Vis. Exp. 2016, e53740.

30

Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium- air battery. J. Phys. Chem. C 2010, 114, 9178–9186.

31

Viswanathan, V.; Thygesen, K. S.; Hummelshøj, J. S.; Nørskov, J. K.; Girishkumar, G.; McCloskey, B. D.; Luntz, A. C. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. J. Chem. Phys. 2011, 135, 214704.

32

Eswaran, M.; Munichandraiah, N.; Scanlon, L. G. High capacity Li-O2 cell and electrochemical impedance spectroscopy study. Electrochem. Solid-State Lett. 2010, 13, A121–A124.

33

Sinha, N.; Munichandraiah, N. Synthesis and characterization of submicron size particles of LiMn2O4 by microemulsion route. J. Solid State Electrochem. 2008, 12, 1619–1627.

Publication history
Copyright
Acknowledgements

Publication history

Received: 19 December 2016
Revised: 03 February 2017
Accepted: 13 February 2017
Published: 26 May 2017
Issue date: December 2017

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

Research at Argonne National Laboratory was funded by U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. K. C. L. also acknowledges grants of computer time through the LCRC Blues Cluster at Argonne National Laboratory.

Return