Journal Home > Volume 10 , Issue 9

We have demonstrated the improved performance of oxygen evolution reactions (OER) using Au/nickel phosphide (Ni12P5) core/shell nanoparticles (NPs) under basic conditions. NPs with a Ni12P5 shell and a Au core, both of which have well-defined crystal structures, have been prepared using solution-based synthetic routes. Compared with pure Ni12P5 NPs and Au-Ni12P5 oligomer-like NPs, the core/shell crystalline structure with Au shows an improved OER activity. It affords a current density of 10 mA/cm2 at a small overpotential of 0.34 V, in 1 M KOH aqueous solution at room temperature. This enhanced OER activity may relate to the strong structural and effective electronic coupling between the single-crystal core and the shell.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst

Show Author's information Yingying Xu§,1Sibin Duan§,1Haoyi Li2Ming Yang3Shijie Wang3Xun Wang2Rongming Wang1( )
Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface ScienceSchool of Mathematics and Physics, University of Science and Technology BeijingBeijing100083China
Department of ChemistryTsinghua UniversityBeijing100084China
Institute of Materials Research and EngineeringA*STAR, 2 Fusionopolis WaySingapore138634Singapore

§ Yingying Xu and Sibin Duan contributed equally to this work.

Abstract

We have demonstrated the improved performance of oxygen evolution reactions (OER) using Au/nickel phosphide (Ni12P5) core/shell nanoparticles (NPs) under basic conditions. NPs with a Ni12P5 shell and a Au core, both of which have well-defined crystal structures, have been prepared using solution-based synthetic routes. Compared with pure Ni12P5 NPs and Au-Ni12P5 oligomer-like NPs, the core/shell crystalline structure with Au shows an improved OER activity. It affords a current density of 10 mA/cm2 at a small overpotential of 0.34 V, in 1 M KOH aqueous solution at room temperature. This enhanced OER activity may relate to the strong structural and effective electronic coupling between the single-crystal core and the shell.

Keywords: oxygen evolution reaction, nickel phosphide, core/shell nanoparticles, interfacial coupling

References(41)

1

Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.

2

Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072-1075.

3

Singh, R. N.; Mishra, D.; Anindita; Sinha, A. S. K.; Singh, A. Novel electrocatalysts for generating oxygen from alkaline water electrolysis. Electrochem. Commun. 2007, 9, 1369-1373.

4

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925-13931.

5

Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Core-ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 2008, 18, 1440-1447.

6

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383-1385.

7

Mattos-Costa, F. I.; de Lima-Neto, P.; Machado, S. A. S.; Avaca, L. A. Characterisation of surfaces modified by sol-gel derived RuxIr1-xO2 coatings for oxygen evolution in acid medium. Electrochim. Acta 1998, 44, 1515-1523.

8

Over, H. Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chem. Rev. 2012, 112, 3356-3426.

9

Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921-2924.

10

Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 8670-8674.

11

Cao, X. Y.; Wang, H. N.; Lu, S. F.; Chen, S.; Xiang, Y. An Ni-P/C electro-catalyst with improved activity for the carbohydrazide oxidation reaction. RSC Adv. 2016, 6, 91956-91959.

12

Wang, H. N.; Cao, D.; Xiang, Y.; Liang, D. W.; Lu, S. F. Novel Pd-decorated amorphous Ni-B/C catalysts with enhanced oxygen reduction reaction activities in alkaline media. RSC Adv. 2014, 4, 51126-51132.

13

Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt- phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501-16509.

14

Song, H.; Dai, M.; Song, H. L.; Wan, X.; Xu, X. W.; Jin, Z. S. A solution-phase synthesis of supported Ni2P catalysts with high activity for hydrodesulfurization of dibenzothiophene. J. Mol. Catal. A-Chem. 2014, 385, 149-159.

15

Oyama, S. T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides. J. Catal. 2003, 216, 343-352.

16

Mi, K.; Ni, Y. H.; Hong, J. M. Solvent-controlled syntheses of Ni12P5 and Ni2P nanocrystals and photocatalytic property comparison. J. Phys. Chem. Solids 2011, 72, 1452-1456.

17

Ni, Y. H.; Liao, K. M.; Li, J. In situ template route for synthesis of porous Ni12P5 superstructures and their applications in environmental treatments. CrystEngComm 2010, 12, 1568-1575.

18

Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the[NiFe] hydrogenase to the Ni2P(001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871-14878.

19

Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267-9270.

20

Paseka, I. Hydrogen evolution reaction on Ni-P alloys: The internal stress and the activities of electrodes. Electrochim. Acta 2008, 53, 4537-4543.

21

Huang, Z. P.; Chen, Z. B.; Chen, Z. Z.; Lv, C. C.; Meng, H.; Zhang, C. Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 2014, 8, 8121-8129.

22

Zhang, G.; Wang, G. C.; Liu, Y.; Liu, H. J.; Qu, J. H.; Li, J. H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 2016, 138, 14686-14693.

23

Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587-5593.

24

Wu, J. B.; Li, P. P.; Pan, Y. T.; Warren, S.; Yin, X.; Yang, H. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem. Soc. Rev. 2012, 41, 8066-8074.

25

Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 2010, 327, 1634-1638.

26

Duan, S. B.; Wang, R. M. Au/Ni12P5 core/shell nanocrystals from bimetallic heterostructures: In situ synthesis, evolution and supercapacitor properties. NPG Asia Mater. 2014, 6, e122.

27

Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. 25th anniversary article: Exploring nanoscaled matter from speciation to phase diagrams: Metal phosphide nanoparticles as a case of study. Adv. Mater. 2014, 26, 371-389.

28

Franke, R. X-ray absorption and photoelectron spectroscopy investigation of binary nickel phosphides. Spectrochim. Acta A-Mol. Biomol. Spectrosc. 1997, 53, 933-941.

29

Wu, S. K.; Lai, P. C.; Lin, Y. C. Atmospheric hydro deoxygenation of guaiacol over nickel phosphide catalysts: Effect of phosphorus composition. Catal. Lett. 2014, 144, 878-889.

30

Franke, R.; Chassé, T.; Streubel, P.; Meisel, A. Auger parameters and relaxation energies of phosphorus in solid compounds. J. Electron Spectrosc. Relat. Phenom. 1991, 56, 381-388.

31

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.

32

Su, X. R.; Xu, Y. Y.; Liu, J. L.; Wang, R. M. Controlled synthesis of Ni0.25Co0.75(OH)2 nanoplates and their electro chemical properties. CrystEngComm 2015, 17, 4859-4864.

33

Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83-89.

34

Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178-184.

35

Hu, J. M.; Zhang, J. Q.; Cao, C. N. Oxygen evolution reaction on IrO2-based DSA® type electrodes: Kinetics analysis of Tafel lines and EIS. Int. J. Hydrogen Energy 2004, 29, 791-797.

36

Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71-129.

37

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

38

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

39

Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.

40

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204.

41

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159-1165.

File
nr-10-9-3103_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 November 2016
Revised: 10 February 2017
Accepted: 11 February 2017
Published: 10 April 2017
Issue date: September 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11674023, 51371015, 51331002, and 51501004), the Beijing Municipality Natural Science Foundation (No. 2142018), and the Fundamental Research Funds for the Central Universities (No. FRF-BR-15-023A). We would like to thank Prof. Feng Yuanping at Centre for Advanced 2D Materials and Graphene Research of NUS for discussions on computing results. We also thank the National Supercomputing Centre Singapore for providing the computing resource.

Return