Journal Home > Volume 10 , Issue 9

Rechargeable lithium batteries are attractive power sources for electronic devices and are being aggressively developed for vehicular use. Nevertheless, problems with their safety and reliability must be solved for the large-scale use of lithium batteries in transportation and grid-storage applications. In this study, a unique hybrid solid-state electrolyte composed of an ionic liquid electrolyte (LiTFSI/Pyr14TFSI) and BaTiO3 nanosize ceramic particles was prepared without a polymer. The electrolyte exhibited high thermal stability, a wide electrochemical window, good ionic conductivity of 1.3 × 10-3 S·cm-1 at 30 ℃, and a remarkably high lithium-ion transference number of 0.35. The solid-state LiFePO4 cell exhibited the best electrochemical properties among the reported solid-state batteries, along with a reasonable rate capability. Li/LiCoO2 cells prepared using this nanocomposite solid electrolyte exhibited high performance at both room temperature and a high temperature, confirming their potential as lithium batteries with enhanced safety and a wide range of operating temperatures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries

Show Author's information Hyunji Choi1,§Hyun Woo Kim1,§Jae-Kwang Kim2( )Young Jun Lim1Youngsik Kim1( )Jou-Hyeon Ahn3( )
School of Energy & Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan689-798Republic of Korea
Department of Solar & Energy EngineeringCheongju University, CheongjuChungbuk28503Republic of Korea
School of Energy & Chemical Engineering and Research Institute for Green Energy Convergence TechnologyGyeongsang National University, 900, Gajwa-dongJinju660-701Republic of Korea

§ Hyunji Choi and Hyun Woo Kim contributed equally to this work.

Abstract

Rechargeable lithium batteries are attractive power sources for electronic devices and are being aggressively developed for vehicular use. Nevertheless, problems with their safety and reliability must be solved for the large-scale use of lithium batteries in transportation and grid-storage applications. In this study, a unique hybrid solid-state electrolyte composed of an ionic liquid electrolyte (LiTFSI/Pyr14TFSI) and BaTiO3 nanosize ceramic particles was prepared without a polymer. The electrolyte exhibited high thermal stability, a wide electrochemical window, good ionic conductivity of 1.3 × 10-3 S·cm-1 at 30 ℃, and a remarkably high lithium-ion transference number of 0.35. The solid-state LiFePO4 cell exhibited the best electrochemical properties among the reported solid-state batteries, along with a reasonable rate capability. Li/LiCoO2 cells prepared using this nanocomposite solid electrolyte exhibited high performance at both room temperature and a high temperature, confirming their potential as lithium batteries with enhanced safety and a wide range of operating temperatures.

Keywords: safety, lithium battery, nanocomposition, solidified ionic liquid shell, charge space

References(39)

1

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930-2946.

2

Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525-2540.

3

Zhang, J. X.; Zhao, N.; Zhang, M.; Li, Y. Q.; Chu, P. K.; Guo, X. X.; Di, Z. F.; Wang, X.; Li, H. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016, 28, 447-454.

4

Orendorff, C. J. The role of separators in lithium-ion cell safety. Electrochem. Soc. Interface 2012, 21, 61-65.

5

Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. Safer electrolytes for lithium-ion batteries: State of the art and perspectives. ChemSusChem 2015, 8, 2154-2175.

6

Nugent, J. L.; Moganty, S. S.; Archer, L. A. Nanoscale organic hybrid electrolytes. Adv. Mater. 2010, 22, 3677-3680.

7

Galiński, M.; Lewandowski, A.; Stępniak, I. Ionic liquids as electrolytes. Electrochim. Acta 2006, 51, 5567-5580.

8

Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621-629.

9

Sakaebe, H.; Matsumoto, H. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide (PP13-TFSI)-novel electrolyte base for Li battery. Electrochem. Commun. 2003, 5, 594-598.

10

Noda, A.; Hayamizu, K.; Watanabe, M. Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B 2001, 105, 4603-4610.

11

Fraser, K. J.; Izgorodina, E. I.; Forsyth, M.; Scott, J. L.; MacFarlane, D. R. Liquids intermediate between "molecular" and "ionic" liquids: Liquid ion pairs? Chem. Commun. 2007, 3817-3819.

12

Kim, J. K.; Matic, A.; Ahn, J. H.; Jacobsson, P. An imidazolium based ionic liquid electrolyte for lithium batteries. J. Power Sources 2010, 195, 7639-7643.

13

Appetecchi, G. B.; Montanino, M.; Zane, D.; Carewska, M.; Alessandrini, F.; Passerini, S. Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis (trifluoromethanesulfonyl) imide ionic liquids. Electrochim. Acta 2009, 54, 1325-1332.

14

McFarlane, D. R.; Sun, J.; Golding, J.; Meakin, P.; Forsyth, M. High conductivity molten salts based on the imide ion. Electrochim. Acta 2000, 45, 1271-1278.

15

Shin, J. H.; Henderson, W. A.; Appetecchi, G. B.; Alessandrini, F.; Passerini, S. Recent developments in the ENEA lithium metal battery project. Electrochim. Acta 2005, 50, 3859-3865.

16

Lewandowski, A.; Świderska-Mocek, A. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. J. Power Sources 2009, 194, 601-609.

17

Kim, J. K.; Niedzicki, L.; Scheers, J.; Shin, C. R.; Lim, D. H.; Wieczorek, W.; Jacobsson, P.; Ahn, J. H.; Matic, A.; Jacobsson, P. Characterization of N-butyl-N-methyl-pyrrolidinium bis (trifluoromethanesulfonyl) imide-based polymer electrolytes for high safety lithium batteries. J. Power Sources 2013, 224, 93-98.

18

Frömling, T.; Kunze, M.; Schönhoff, M.; Sundermeyer, J.; Roling, B. Enhanced lithium transference numbers in ionic liquid electrolytes. J. Phys. Chem. B 2008, 112, 12985-12990.

19

Saito, Y.; Umecky, T.; Niwa, J.; Sakai, T.; Maeda, S. Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent. J. Phys. Chem. B, 2007, 111, 11794-11802.

20

Hayamizu, K.; Aihara, Y.; Nakagawa, H.; Nukuda, T.; Price, W. S. Ionic conduction and ion diffusion in binary room-temperature ionic liquids composed of[emim][BF4] and LiBF4. J. Phys. Chem. B 2004, 108, 19527-19532.

21

Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim. Acta 2011, 56, 3926-3933.

22

Kumar, B. Heterogeneous electrolytes: Variables for and uncertainty in conductivity measurements. J. Power Sources 2008, 179, 401-406.

23

Bhattacharyya, A. J.; Maier, J.; Bock, R.; Lange, F. F. New class of soft matter electrolytes obtained via heterogeneous doping: Percolation effects in "soggy sand" electrolytes. Solid State Ionics 2006, 177, 2565-2568.

24

Osińska, M.; Walkowiak, M.; Zalewska, A.; Jesionowski, T. Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes. J. Membrane Sci. 2009, 326, 582-588.

25

Kim, J. K.; Scheers, J.; Park, T. J.; Kim, Y. Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries. ChemSusChem 2015, 8, 636-641.

26

Blanga, R.; Golodnitsky, D.; Ardel, G.; Freedman, K.; Gladkich, A.; Rosenberg, Y.; Nathan M.; Peled, E. Quasi-solid polymer-in-ceramic membrane for Li-ion batteries. Electrochim. Acta 2013, 114, 325-333.

27

Ito, S.; Unemoto, A.; Ogawa, H.; Tomai, T.; Honma, I. Application of quasi-solid-state silica nanoparticles-ionic liquid composite electrolytes to all-solid-state lithium secondary battery. J. Power Sources 2012, 208, 271-275.

28

Hori, M.; Aoki, Y.; Maeda, S.; Tatsumi, R.; Hayakawa, S. Thermal stability of ionic liquids as an electrolyte for lithium-ion batteries. ECS Trans. 2010, 25, 147-153.

29

Hess, S.; Wohlfahrt-Mehrens, M.; Wachtler, M. Flammability of Li-ion battery electrolytes: Flash point and self-extinguishing time measurements. J. Electrochem. Soc. 2015, 162, A3084-A3097.

30

Bloise, A. C.; Donoso, J. P.; Magon, C. J.; Rosario, A. V.; Pereira, E. C. NMR and conductivity study of PEO-based composite polymer electrolytes. Electrochim. Acta 2003, 48, 2239-2246.

31

Bhattacharyya, A. J.; Maier, J. Second phase effects on the conductivity of non-aqueous salt solutions: "Soggy sand electrolytes". Adv. Mater. 2004, 16, 811-814.

32

Asl, N. M.; Keith, J.; Lim, C.; Zhu, L. K.; Kim, Y. Inorganic solid/organic liquid hybrid electrolyte for use in Li-ion battery. Electrochim. Acta 2012, 79, 8-16.

33

Inda, Y.; Katoh, T.; Baba, M. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics. J. Power Sources. 2007, 174, 741-744.

34

Lassègues, J. C.; Grondin, J.; Aupetit, C.; Johansson, P. Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids. J. Phys. Chem. A 2009, 113, 305-314.

35

Kim, J. K.; Lim, D. H.; Scheers, J.; Pitawala, J.; Wilken, S.; Johansson, P.; Ahn, J. H.; Matic, A.; Jacobsson, P. Properties of N-butyl-N-methyl-pyrrolidinium Bis(trifluoromethanesulfonyl) imide based electrolytes as a function of lithium Bis(trifluoromethanesulfonyl) imide doping. J. Korean Electrochem. Soc. 2011, 14, 92-97.

36

Duluard, S.; Grondin, J.; Bruneel, J. L.; Pianet, I.; Grélard, A.; Campet, G.; Delville, M. H.; Lassègues, J. C. Lithium solvation and diffusion in the 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquid. J. Raman Spectrosc. 2008, 39, 627-632.

37

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.

38

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303-4418.

39

Kühnel, R. S.; Lübke, M.; Winter, M.; Passerini, S.; Balducci, A. Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. J. Power Sources 2012, 214, 178-184.

File
nr-10-9-3092_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 November 2016
Revised: 23 January 2017
Accepted: 11 February 2017
Published: 19 May 2017
Issue date: September 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the 2017 Research Fund (No. 1.170012.01) of UNIST (Ulsan National Institute of Science and Technology) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Nos. NRF-2014R1A1A2A16053515 and NRF-2016R1A2A2A07005334).

Return