Journal Home > Volume 10 , Issue 4

Core–shell nanostructures consisting of active metal cores and protective shells often exhibit enhanced catalytic performance, in which reactants can access a small part of the core surfaces through the pores in the shells. In this study, we show that Pt nanoparticles (NPs) can be embedded into few-layer hexagonal boron nitride (h-BN) overlayers, forming Pt@h-BN core–shell nanocatalysts. The h-BN shells not only protect the Pt NPs under harsh conditions but also allow gaseous molecules such as CO and O2 to access a large part of the Pt surfaces through a facile intercalation process. As a result, the Pt@h-BN nanostructures act as nanoreactors, and CO oxidation reactions with improved activity, selectivity, and stability occur at the core–shell interfaces. The confinement effect exerted by the h-BN shells promotes the Pt-catalyzed reactions. Our work suggests that two-dimensional shells can function as robust but flexible covers on nanocatalyst surfaces and tune the surface reactivity.

File
nr-10-4-1403_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 January 2017
Revised: 25 January 2017
Accepted: 03 February 2017
Published: 17 March 2017
Issue date: April 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21373208, 91545204, 21688102, and 21621063), and Ministry of Science and Technology of China (Nos. 2016YFA0200200, 2013CB834603, and 2013CB933100), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020200).

Return