Journal Home > Volume 10 , Issue 4

Core–shell nanostructures consisting of active metal cores and protective shells often exhibit enhanced catalytic performance, in which reactants can access a small part of the core surfaces through the pores in the shells. In this study, we show that Pt nanoparticles (NPs) can be embedded into few-layer hexagonal boron nitride (h-BN) overlayers, forming Pt@h-BN core–shell nanocatalysts. The h-BN shells not only protect the Pt NPs under harsh conditions but also allow gaseous molecules such as CO and O2 to access a large part of the Pt surfaces through a facile intercalation process. As a result, the Pt@h-BN nanostructures act as nanoreactors, and CO oxidation reactions with improved activity, selectivity, and stability occur at the core–shell interfaces. The confinement effect exerted by the h-BN shells promotes the Pt-catalyzed reactions. Our work suggests that two-dimensional shells can function as robust but flexible covers on nanocatalyst surfaces and tune the surface reactivity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core–shell nanoreactors

Show Author's information Mengmeng Sun1Qiang Fu1( )Lijun Gao1,2Yanping Zheng3Yangyang Li3Mingshu Chen3Xinhe Bao1
State Key Laboratory of CatalysisiChEMDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefei230026China
State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryXiamen UniversityXiamen361005China

Abstract

Core–shell nanostructures consisting of active metal cores and protective shells often exhibit enhanced catalytic performance, in which reactants can access a small part of the core surfaces through the pores in the shells. In this study, we show that Pt nanoparticles (NPs) can be embedded into few-layer hexagonal boron nitride (h-BN) overlayers, forming Pt@h-BN core–shell nanocatalysts. The h-BN shells not only protect the Pt NPs under harsh conditions but also allow gaseous molecules such as CO and O2 to access a large part of the Pt surfaces through a facile intercalation process. As a result, the Pt@h-BN nanostructures act as nanoreactors, and CO oxidation reactions with improved activity, selectivity, and stability occur at the core–shell interfaces. The confinement effect exerted by the h-BN shells promotes the Pt-catalyzed reactions. Our work suggests that two-dimensional shells can function as robust but flexible covers on nanocatalyst surfaces and tune the surface reactivity.

Keywords: hexagonal boron nitride, core–shell, Pt, CO oxidation, nanoreactor

References(65)

1

Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nano­dendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

2

Yu, W. T.; Porosoff, M. D.; Chen, J. G. Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem. Rev. 2012, 112, 5780–5817.

3

Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface- confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.

4

Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126–131.

5

Gu, J.; Zhang, Z. Y.; Hu, P.; Ding, L. P.; Xue, N. H.; Peng, L. M.; Guo, X. F.; Lin, M.; Ding, W. P. Platinum nanoparticles encapsulated in MFI zeolite crystals by a two-step dry gel conversion method as a highly selective hydrogenation catalyst. ACS Catal. 2015, 5, 6893–6901.

6

Chen, S. G.; Wei, Z. D.; Qi, X. Q.; Dong, L. C.; Guo, Y. G.; Wan, L. J.; Shao, Z. G.; Li, L. Nanostructured polyaniline- decorated Pt/C@PANI core–shell catalyst with enhanced durability and activity. J. Am. Chem. Soc. 2012, 134, 13252–13255.

7

Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J. J.; Song, D. T.; Liu, Z. -S.; Wang, H. J.; Shen, J. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J. Power Sources 2007, 165, 739–756.

8

Li, Q. F.; He, R. H.; Gao, J. -A.; Jensen, J. O.; Bjerrum, N. J. The CO poisoning effect in PEMFCs operational at tem­peratures up to 200 ℃. J. Electrochem. Soc. 2003, 150, A1599–A1605.

9

Rodriguez, J. A.; Hrbek, J. Interaction of sulfur with well- defined metal and oxide surfaces: Unraveling the mysteries behind catalyst poisoning and desulfurization. Acc. Chem. Res. 1999, 32, 719–728.

10

Nakamura, H.; Iwama, H.; Yamamoto, Y. Palladium- and platinum-catalyzed addition of aldehydes and imines with allylstannanes. Chemoselective allylation of imines in the presence of aldehydes. J. Am. Chem. Soc. 1996, 118, 6641–6647.

11

Kahlich, M. J.; Gasteiger, H. A.; Behm, R. J. Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3. J. Catal. 1997, 171, 93–105.

12

Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132–138.

13

Liu, Z. F.; Hu, J. E.; Wang, Q.; Gaskell, K.; Frenkel, A. I.; Jackson, G. S.; Eichhorn, B. PtMo alloy and MoOx@Pt core–shell nanoparticles as highly CO-tolerant electrocatalysts. J. Am. Chem. Soc. 2009, 131, 6924–6925.

14

Du, X. X.; He, Y.; Wang, X. X.; Wang, J. N. Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy Environ. Sci. 2016, 9, 2623–2632.

15

Wang, Q. M.; Chen, S. G.; Shi, F.; Chen, K.; Nie, Y.; Wang, Y.; Wu, R.; Li, J.; Zhang, Y.; Ding, W. et al. Structural evolution of solid Pt nanoparticles to a hollow PtFe alloy with a Pt-skin surface via space-confined pyrolysis and the nanoscale kirkendall effect. Adv. Mater. 2016, 28, 10673–10678.

16

Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electro­chemical oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485.

17

Kuttiyiel, K. A.; Sasaki, K.; Choi, Y.; Su, D.; Liu, P.; Adzic, R. R. Nitride stabilized PtNi core–shell nanocatalyst for high oxygen reduction activity. Nano Lett. 2012, 12, 6266–6271.

18

Zhai, Q. G.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Wang, Y.; Deng, W. P.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(i) oxide co-catalysts with a core–shell structure. Angew. Chem., Int. Ed. 2013, 52, 5776–5779.

19

Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Román-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978.

20

Shi, Y. -S.; Yuan, Z. -F.; Wei, Q.; Sun, K. -Q.; Xu, B. -Q. Pt–FeOx/SiO2 catalysts prepared by galvanic displacement show high selectivity for cinnamyl alcohol production in the chemoselective hydrogenation of cinnamaldehyde. Catal. Sci. Technol. 2016, 6, 7033–7037.

21

Tang, H. L.; Wei, J. K.; Liu, F.; Qiao, B. T.; Pan, X. L.; Li, L.; Liu, J. Y.; Wang, J. H.; Zhang, T. Strong metal-support interactions between gold nanoparticles and nonoxides. J. Am. Chem. Soc. 2016, 138, 56–59.

22

Fu, Q.; Wagner, T. Interaction of nanostructured metal overlayers with oxide surfaces. Surf. Sci. Rep. 2007, 62, 431–498.

23

Ma, Z.; Dai, S. Design of novel structured gold nanocatalysts. ACS Catal. 2011, 1, 805–818.

24

Wu, Z. X.; Lv, Y. Y.; Xia, Y. Y.; Webley, P. A.; Zhao, D. Y. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. J. Am. Chem. Soc. 2012, 134, 2236–2245.

25

Lu, J. L.; Fu, B. S.; Kung, M. C.; Xiao, G. M.; Elam, J. W.; Kung, H. H.; Stair, P. C. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 2012, 335, 1205–1208.

26

Guo, L.; Jiang, W. -J.; Zhang, Y.; Hu, J. -S.; Wei, Z. -D.; Wan, L. -J. Embedding Pt nanocrystals in N-doped porous carbon/ carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction. ACS Catal. 2015, 5, 2903–2909.

27

Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P. et al. Graphene cover-promoted metal-catalyzed reactions. Proc. Natl. Acad. Sci. USA 2014, 111, 17023–17028.

28

Zhang, Y. H.; Weng, X. F.; Li, H.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Liu, Z.; Chen, M. S.; Fu, Q.; Bao, X. H. Hexagonal boron nitride cover on Pt(111): A new route to tune molecule-metal interaction and metal-catalyzed reactions. Nano Lett. 2015, 15, 3616–3623.

29

Zhang, H.; Fu, Q.; Cui, Y.; Tan, D. L.; Bao, X. H. Growth mechanism of graphene on Ru(0001) and O2 adsorption on the graphene/Ru(0001) surface. J. Phys. Chem. C 2009, 113, 8296–8301.

30

Wei, M. M.; Fu, Q.; Wu, H.; Dong, A. Y.; Bao, X. H. Hydrogen intercalation of graphene and boron nitride monolayers grown on Pt (111). Top. Catal. 2016, 59, 543–549.

31

Gao, L. J.; Fu, Q.; Wei, M. M.; Zhu, Y. F.; Liu, Q.; Crumlin, E.; Liu, Z.; Bao, X. H. Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells. ACS Catal. 2016, 6, 6814–6822.

32

Yang, Y.; Fu, Q.; Wei, M. M.; Bluhm, H.; Bao, X. H. Stability of BN/metal interfaces in gaseous atmosphere. Nano Res. 2015, 8, 227–237.

33
Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev., in press, DOI: 10.1039/c6cs00424e.https://doi.org/10.1039/C6CS00424E
DOI
34

Kovtyukhova, N. I.; Wang, Y. X.; Berkdemir, A.; Cruz- Silva, R.; Terrones, M.; Crespi, V. H.; Mallouk, T. E. Non- oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat. Chem. 2014, 6, 957–963.

35

Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175–8179.

36

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

37

Ferrighi, L.; Datteo, M.; Fazio, G.; Di Valentin, C. Catalysis under cover: Enhanced reactivity at the interface between (doped) graphene and anatase TiO2. J. Am. Chem. Soc. 2016, 138, 7365–7376.

38

Zhou, Y. N.; Chen, W.; Cui, P.; Zeng, J.; Lin, Z. N.; Kaxiras, E.; Zhang, Z. Y. Enhancing the hydrogen activation reactivity of nonprecious metal substrates via confined catalysis underneath graphene. Nano Lett. 2016, 16, 6058–6063.

39

Emmez, E.; Yang, B.; Shaikhutdinov, S.; Freund, H. -J. Permeation of a single-layer SiO2 membrane and chemistry in confined space. J. Phys. Chem. C 2014, 118, 29034–29042.

40

Shrestha, R. P.; Diyabalanage, H. V. K.; Semelsberger, T. A.; Ott, K. C.; Burrell, A. K. Catalytic dehydrogenation of ammonia borane in non-aqueous medium. Int. J. Hydrogen Energy 2009, 34, 2616–2621.

41

Smythe, N. C.; Gordon, J. C. Ammonia borane as a hydrogen carrier: Dehydrogenation and regeneration. Eur. J. Inorg. Chem. 2010, 2010, 509–521.

42

Kim, G.; Jang, A. R.; Jeong, H. Y.; Lee, Z.; Kang, D. J.; Shin, H. S. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 2013, 13, 1834–1839.

43

Müller, F.; Grandthyll, S. Monolayer formation of hexagonal boron nitride on Ag(001). Surf. Sci. 2013, 617, 207–210.

44

Xie, Y. P.; Liu, G.; Lu, G. Q.; Cheng, H. M. Boron oxynitride nanoclusters on tungsten trioxide as a metal-free cocatalyst for photocatalytic oxygen evolution from water splitting. Nanoscale 2012, 4, 1267–1270.

45

Wang, Y. J.; Trenary, M. Surface chemistry of boron oxidation. 2. The reactions of boron oxides B2O2 and B2O3 with boron films grown on tantalum(110). Chem. Mater. 1993, 5, 199–205.

46

Moussa, G.; Moury, R.; Demirci, U. B.; Miele, P. Borates in hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2013, 38, 7888–7895.

47

Yang, F.; Li, Y. Z.; Chu, W.; Li, C.; Tong, D. G. Mesoporous Co–B–N–H nanowires: Superior catalysts for decomposition of hydrous hydrazine to generate hydrogen. Catal. Sci. Technol. 2014, 4, 3168–3179.

48

Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

49

Brongersma, H. H.; Draxler, M.; De Ridder, M.; Bauer, P. Surface composition analysis by low-energy ion scattering. Surf. Sci. Rep. 2007, 62, 63–109.

50

Yu, X. W.; Ye, S. Y. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. J. Power Sources 2007, 172, 145–154.

51

Antolini, E. Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B: Environ. 2009, 88, 1–24.

52

Deng, D. H.; Pan, X. L.; Zhang, H.; Fu, Q.; Tan, D. L.; Bao, X. H. Freestanding graphene by thermal splitting of silicon carbide granules. Adv. Mater. 2010, 22, 2168–2171.

53

Albiter, M. A.; Crooks, R. M.; Zaera, F. Adsorption of carbon monoxide on dendrimer-encapsulated platinum nanoparticles: Liquid versus gas phase. J. Phys. Chem. Lett. 2010, 1, 38–40.

54

Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem., Int. Ed. 2012, 51, 4856–4859.

55

Grånäs, E.; Andersen, M.; Arman, M. A.; Gerber, T.; Hammer, B.; Schnadt, J.; Andersen, J. N.; Michely, T.; Knudsen, J. Co intercalation of graphene on Ir(111) in the millibar regime. J. Phys. Chem. C 2013, 117, 16438–16447.

56

Ma, D. L.; Zhang, Y. F.; Liu, M. X.; Ji, Q. Q.; Gao, T.; Zhang, Y.; Liu, Z. F. Clean transfer of graphene on Pt foils mediated by a carbon monoxide intercalation process. Nano Res. 2013, 6, 671–678.

57

Jin, L.; Fu, Q.; Dong, A. Y.; Ning, Y. X.; Wang, Z. J.; Bluhm, H.; Bao, X. H. Surface chemistry of CO on Ru(0001) under the confinement of graphene cover. J. Phys. Chem. C 2014, 118, 12391–12398.

58

Wei, M. M.; Fu, Q.; Yang, Y.; Wei, W.; Crumlin, E.; Bluhm, H.; Bao, X. H. Modulation of surface chemistry of CO on Ni(111) by surface graphene and carbidic carbon. J. Phys. Chem. C 2015, 119, 13590–13597.

59

Kim, H.; Robertson, A. W.; Kim, S. O.; Kim, J. M.; Warner, J. H. Resilient high catalytic performance of platinum nanocatalysts with porous graphene envelope. ACS Nano 2015, 9, 5947–5957.

60

Dong, A. Y.; Fu, Q.; Wu, H.; Wei, M. M.; Bao, X. H. Factors controlling the CO intercalation of h-BN overlayers on Ru(0001). Phys. Chem. Chem. Phys. 2016, 18, 24278–24284.

61

Wen, Z. H.; Liu, J.; Li, J. H. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv. Mater. 2008, 20, 743–747.

62

Gao, L. J.; Fu, Q.; Li, J. M.; Qu, Z. P.; Bao, X. H. Enhanced CO oxidation reaction over Pt nanoparticles covered with ultrathin graphitic layers. Carbon 2016, 101, 324–330.

63
Mieville, R. L.; Reichmann, M. G. Temperature-programmed desorption study of CO on Pt-reforming catalysts. In Characterization and Catalyst Development, ACS Symposium Series; American Chemical Society: Washington, DC, 1989; Vol. 411, pp 243–250.https://doi.org/10.1021/bk-1989-0411.ch023
DOI
64

Patience, G. S.; Benamer, A.; Chiron, F. X.; Shekari, A.; Dubois, J. L. Selectively combusting CO in the presence of propylene. Chem. Eng. Process. : Process Intensification 2013, 70, 162–168.

65

Binder, A. J.; Toops, T. J.; Unocic, R. R.; Parks, J. E., II; Dai, S. Low-temperature CO oxidation over a ternary oxide catalyst with high resistance to hydrocarbon inhibition. Angew. Chem., Int. Ed. 2015, 54, 13263–13267.

File
nr-10-4-1403_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 January 2017
Revised: 25 January 2017
Accepted: 03 February 2017
Published: 17 March 2017
Issue date: April 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21373208, 91545204, 21688102, and 21621063), and Ministry of Science and Technology of China (Nos. 2016YFA0200200, 2013CB834603, and 2013CB933100), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020200).

Return