Journal Home > Volume 10 , Issue 5

Developing cost-efficient electrocatalysts for oxygen evolution is vital for the viability of H2 energy generated via electrolytic water. Engineering favorable defects on the electrocatalysts to provide accessible active sites can boost the sluggish reaction thermodynamics or kinetics. Herein, Co1-xS nanosheets were designed and grown on reduced graphene oxide (rGO) by controlling the successive two-step hydrothermal reaction. A belt-like cobalt-based precursor was first formed with the assistance of ammonia and rGO, which were then sulfurized into Co1-xS by L-cysteine at a higher hydrothermal temperature. Because of the non-stoichiometric defects and ultrathin sheet-like structure, additional cobalt vacancies (V'Co) were formed/exposed on the catalyst surface, which expedited the charge diffusion and increased the electroactive surface in contact with the electrolyte. The resulting Co1-xS/rGO hybrids exhibited an overpotential as low as 310 mV at 10 mA·cm-2 in an alkaline electrolyte for the oxygen evolution reaction (OER). Density functional theory calculations indicated that the V'Co on the Co1-xS/rGO hybrid functioned as catalytic sites for enhanced OER. They also reduced the energy barrier for the transformation of intermediate oxygenated species, promoting the OER thermodynamics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Co-vacancy-rich Co1-x S nanosheets anchored on rGO for high-efficiency oxygen evolution

Show Author's information Jiaqing Zhu1Zhiyu Ren1( )Shichao Du1Ying Xie1Jun Wu1,2Huiyuan Meng1Yuzhu Xue1Honggang Fu1( )
Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
College of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001China

Abstract

Developing cost-efficient electrocatalysts for oxygen evolution is vital for the viability of H2 energy generated via electrolytic water. Engineering favorable defects on the electrocatalysts to provide accessible active sites can boost the sluggish reaction thermodynamics or kinetics. Herein, Co1-xS nanosheets were designed and grown on reduced graphene oxide (rGO) by controlling the successive two-step hydrothermal reaction. A belt-like cobalt-based precursor was first formed with the assistance of ammonia and rGO, which were then sulfurized into Co1-xS by L-cysteine at a higher hydrothermal temperature. Because of the non-stoichiometric defects and ultrathin sheet-like structure, additional cobalt vacancies (V'Co) were formed/exposed on the catalyst surface, which expedited the charge diffusion and increased the electroactive surface in contact with the electrolyte. The resulting Co1-xS/rGO hybrids exhibited an overpotential as low as 310 mV at 10 mA·cm-2 in an alkaline electrolyte for the oxygen evolution reaction (OER). Density functional theory calculations indicated that the V'Co on the Co1-xS/rGO hybrid functioned as catalytic sites for enhanced OER. They also reduced the energy barrier for the transformation of intermediate oxygenated species, promoting the OER thermodynamics.

Keywords: nanosheets, electrocatalysis, oxygen evolution reaction, cobalt vacancies (V′Co), Co1-xS

References(68)

1

Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Norskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022-3029.

2

Xie, G. C.; Zhang, K.; Guo, B. D.; Liu, Q.; Fang, L.; Gong, J. R. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 2013, 25, 3820-3839.

3

Li, J. Y.; Wang, G. X.; Wang, J.; Miao, S.; Wei, M. M.; Yang, F.; Yu, L.; Bao, X. H. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519-1527.

4

Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555-1614.

5

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

6

Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 387-392.

7

Wang, Y.; Huang, W.; Si, C. H.; Zhang, J.; Yan, X. J.; Jin, C. H.; Ding, Y.; Zhang, Z. H. Self-supporting nanoporous gold-palladium overlayer bifunctional catalysts toward oxygen reduction and evolution reactions. Nano Res. 2016, 9, 3781-3794.

8

Elbert, K.; Hu, J.; Ma, Z.; Zhang, Y.; Chen, G. Y.; An, W.; Liu, P.; Isaacs, H. S.; Adzic, R. R.; Wang, J. X. Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core. ACS Catal. 2015, 5, 6764-6772.

9

Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D. et al. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew. Chem., Int. Ed. 2014, 53, 14016-14021.

10

Meng, Y. T.; Song, W. Q.; Huang, H.; Ren, Z.; Chen, S. Y.; Suib, S. L. Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 2014, 136, 11452-11464.

11

Liu, X. Y.; Wang, X.; Yuan, X. T.; Dong, W. J.; Huang, F. Q. Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis. J. Mater. Chem. A 2016, 4, 167-172.

12

Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.

13

Wang, H. T.; Lee, H. W.; Deng, Y.; Lu, Z. Y.; Hsu, P. C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.

14

Stern, L. A.; Feng, L. G.; Song, F.; Hu, X. L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347-2351.

15

Ryu, J.; Jung, N.; Jang, J. H.; Kim, H. J.; Yoo, S. J. In situ transformation of hydrogen-evolving CoP nanoparticles: Toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units. ACS Catal. 2015, 5, 4066-4074.

16

Yang, Y.; Fei, H. L.; Ruan, G. D.; Tour, J. M. Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv. Mater. 2015, 27, 3175-3180.

17

Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9, 1977-1984.

18

Diaz-Morales, O.; Ferrus-Suspedra, D.; Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 2016, 7, 2639-2645.

19

Li, S. W.; Wang, Y. C.; Peng, S. J.; Zhang, L. J.; Al-Enizi, A. M.; Zhang, H.; Sun, X. H.; Zheng, G. F. Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts. Adv. Energy Mater. 2016, 6, 1501661.

20

Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J. P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170-180.

21

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martinez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; N?rskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159-1165.

22

Pfeifer, V.; Jones, T. E.; Wrabetz, S.; Massué, C.; Vélez, J. J. V.; Arrigo, R.; Scherzer, M.; Piccinin, S.; H?vecker, M.; Knop-Gericke, A. et al. Reactive oxygen species in iridiumbased OER catalysts. Chem. Sci. 2016, 7, 6791-6795.

23

Du, S. C.; Ren, Z. Y.; Zhang, J.; Wu, J.; Xi, W.; Zhu, J. Q.; Fu, H. G. Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem. Commun. 2015, 51, 8066-8069.

24

Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688-2694.

25

Yu, X. X.; Hua, T. Y.; Liu, X.; Yan, Z. P.; Xu, P.; Du, P. W. Nickel-based thin film on multiwalled carbon nanotubes as an efficient bifunctional electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 2014, 6, 15395-15402.

26

Lu, Z. Y.; Qian, L.; Xu, W. W.; Tian, Y.; Jiang, M.; Li, Y. P.; Sun, X. M.; Duan, X. Dehydrated layered double hydroxides: Alcohothermal synthesis and oxygen evolution activity. Nano Res. 2016, 9, 3152-3161.

27

Vaidhyanathan, B.; Rao, K. J. Synthesis of Ti, Ga, and V nitrides: Microwave-assisted carbothermal reduction and nitridation. Chem. Mater. 1997, 9, 1196-1200.

28

Cobo, S.; Heidkamp, J.; Jacques, P. A.; Fize, J.; Fourmond, V.; Guetaz, L.; Jousselme, B.; Ivanova, V.; Dau, H.; Palacin, S. et al. A Janus cobalt-based catalytic material for electrosplitting of water. Nat. Mater. 2012, 11, 802-807.

29

Shi, S. P.; Gao, D. Q.; Xia, B. R.; Liu, P. T.; Xue, D. S. Enhanced hydrogen evolution catalysis in MoS2 nanosheets by incorporation of a metal phase. J. Mater. Chem. A 2015, 3, 24414-24421.

30

Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878-10884.

31

Zhang, J.; Liu, S. H.; Liang, H. W.; Dong, R. H.; Feng, X. L. Hierarchical transition-metal dichalcogenide nanosheets for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 7426-7431.

32

Chen, C.; Yang, X. D.; Zhou, Z. Y.; Lai, Y. J.; Rauf, M.; Wang, Y.; Pan, J.; Zhuang, L.; Wang, Q.; Wang, Y. C. et al. Aminothiazole-derived N, S, Fe-doped graphene nanosheets as high performance electrocatalysts for oxygen reduction. Chem. Commun. 2015, 51, 17092-17095.

33

Gao, M. R.; Cao, X.; Gao, Q.; Xu, Y. F.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 2014, 8, 3970-3978.

34

Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Machado, K. D.; Pizani, P. S. Structural studies of cobalt selenides prepared by mechanical alloying. Phys. B: Condens. Matter 2002, 324, 409-418.

35

Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyritetype cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245-1251.

36

Ling, T.; Yan, D. Y.; Jiao, Y.; Wang, H.; Zheng, Y.; Zheng, X. L.; Mao, J.; Du,X.-W.; Hu, Z. P.; Jaroniec, M. et al. Engineering surface atomic structure of single-crystal cobalt (Ⅱ) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876.

37

Gao, R.; Li, Z. Y.; Zhang, X. L.; Zhang, J. C.; Hu, Z. B.; Liu, X. F. Carbon-dotted defective CoO with oxygen vacancies: A synergetic design of bifunctional cathode catalyst for Li-O2 batteries. ACS Catal. 2016, 6, 400-406.

38

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48-53.

39

Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.

40

Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem., Int. Ed. 2013, 52, 2474-2477.

41

Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670-15675.

42

Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140-3141.

43

Liu, G.; Yang, H. G.; Wang, X. W.; Cheng, L. N.; Pan, J.; Lu, G. Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868-12869.

44

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68-71.

45

Kuang, Y.; Feng, G.; Li, P. S.; Bi, Y. M.; Li, Y. P.; Sun, X. M. Single-crystalline ultrathin nickel nanosheets array from in situ topotactic reduction for active and stable electrocatalysis. Angew. Chem., Int. Ed. 2016, 55, 693-697.

46

Fan, X. J.; Zhou, H. Q.; Guo, X. WC nanocrystals grown on vertically aligned carbon nanotubes: An efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Nano 2015, 9, 5125-5134.

47

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23-39.

48

Jiang, B. J.; Tang, Y. Q.; Qu, Y.; Wang, J. Q.; Xie, Y.; Tian, C. G.; Zhou, W.; Fu, H. G. Thin carbon layer coated Ti3+-TiO2 nanocrystallites for visible-light driven photocatalysis. Nanoscale 2015, 7, 5035-5045.

49

Abidat, I.; Bouchenafa-Saib, N.; Habrioux, A.; Comminges, C.; Canaff, C.; Rousseau, J.; Napporn, T. W.; Dambournet, D.; Borkiewicz, O.; Kokoh, K. B. Electrochemically induced surface modifications of mesoporous spinels (Co3O4-δ, MnCo2O4-δ, NiCo2O4-δ) as the origin of the OER activity and stability in alkaline medium. J. Mater. Chem. A 2015, 3, 17433-17444.

50

Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

51

Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713-725.

52

Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem., Int. Ed. 2015, 54, 6251-6254.

53

Wu, J. J.; Liu, M. J.; Chatterjee, K.; Hackenberg, K. P.; Shen, J. F.; Zou, X. L.; Yan, Y.; Gu, J.; Yang, Y. C.; Lou, J. et al. Exfoliated 2D transition metal disulfides for enhanced electrocatalysis of oxygen evolution reaction in acidic medium. Adv. Mater. Interfaces 2016, 3, 1500669.

54

Zhang, G.; Wang, G. C.; Liu, Y.; Liu, H. J.; Qu, J. H.; Li, J. H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 2016, 138, 14686-14693.

55

Zhao, W. W.; Zhang, C.; Geng, F. Y.; Zhuo, S. F.; Zhang, B. Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions. ACS Nano 2014, 8, 10909-10919.

56

Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320-1326.

57

Zhang, J.; Yu, J. G.; Jaroniec, M.; Gong, J. R. Noble metalfree reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 2012, 12, 4584-4589.

58

Miao, J. W.; Xiao,F.-X.; Yang, H. B.; Khoo, S. Y.; Chen, J. Z.; Fan, Z. X.; Hsu,Y.-Y.; Chen, H. M.; Zhang, H.; Liu, B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci. Adv. 2015, 1, e1500259.

59

Lapides, A. M.; Sherman, B. D.; Brennaman, M. K.; Dares, C. J.; Skinner, K. R.; Templeton, J. L.; Meyer, T. J. Synthesis, characterization, and water oxidation by a molecular chromophore-catalyst assembly prepared by atomic layer deposition. The "mummy" strategy. Chem. Sci. 2015, 6, 6398-6406.

60

Shen, M. X.; Ruan, C. P.; Chen, Y.; Jiang, C. H.; Ai, K. L.; Lu, L. H. Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: Extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2015, 7, 1207-1218.

61

Ma, T. Y.; Zheng, Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Mesoporous MnCo2O4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. J. Mater. Chem. A 2014, 2, 8676-8682.

62

Liu, X.; Liu, W.; Ko, M.; Park, M.; Kim, M. G.; Oh, P.; Chae, S.; Park, S.; Casimir, A.; Wu, G. et al. Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv. Funct. Mater. 2015, 25, 5799-5808.

63

Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351-9355.

64

Xie, G. C.; Zhang, K.; Fang, H.; Guo, B. D.; Wang, R. Z.; Yan, H.; Fang, L.; Gong, J. R. A photoelectrochemical investigation on the synergetic effect between CdS and reduced graphene oxide for solar-energy conversion. Chem. —Asian J. 2013, 8, 2395-2400.

65

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1234.

66

Zhou, W.; Sun, F. F.; Pan, K.; Tian, G. H.; Jiang, B. J.; Ren, Z. Y.; Tian, C. G.; Fu, H. G. Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: Preparation, characterization, and photocatalytic performance. Adv. Funct. Mater. 2011, 21, 1922-1930.

67

Zhang, X. D.; Liu, Q. H.; Meng, L. J.; Wang, H.; Bi, W. T.; Peng, Y. H.; Yao, T.; Wei, S. Q.; Xie, Y. In-plane coassembly route to atomically thick inorganic-organic hybrid nanosheets. ACS Nano 2013, 7, 1682-1688.

68

Hammer, B.; N?rskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238-240.

File
nr-10-5-1819_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 December 2016
Revised: 22 January 2017
Accepted: 03 February 2017
Published: 17 March 2017
Issue date: May 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

We gratefully acknowledge the support of this research by the National Natural Science Foundation of China (Nos. 21631004, 21371053, and 21573062), the Project for Foshan Innovation Group (No. 2014IT100062), Application Technology Research and Development Projects in Harbin (No. 2013AE4BW051), the International Science & Technology Cooperation Program of China (No. 2014DFR41110), the Foundation of Heilongjiang Province of China (No. QC2013C009) and the supporting plan for Excellent Youth of Heilongjiang University (No. JCL201501).

Return