Journal Home > Volume 10 , Issue 9

Hollow nanostructures have attracted considerable attention owing to their large surface area, tunable cavity, and low density. In this study, a unique flower-like C@SnOX@C hollow nanostructure (denoted as C@SnOX@C-1) was synthesized through a novel one-pot approach. The C@SnOX@C-1 had a hollow carbon core and interlaced petals on the shell. Each petal was a SnO2 nanosheet coated with an ultrathin carbon layer ~2 nm thick. The generation of the hollow carbon core, the growth of the SnO2 nanosheets, and the coating of the carbon layers were simultaneously completed via a hydrothermal process using resorcinol-formaldehyde resin-coated SiO2 nanospheres, tin chloride, urea, and glucose as precursors. The resultant architecture with a large surface area exhibited excellent lithium-storage performance, delivering a high reversible capacity of 756.9 mA·h·g–1 at a current density of 100 mA·g–1 after 100 cycles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flower-like C@SnOX@C hollow nanostructures with enhanced electrochemical properties for lithium storage

Show Author's information Yijia Wang1Zheng Jiao2Minghong Wu2Kun Zheng3Hongwei Zhang4Jin Zou3Chengzhong Yu4( )Haijiao Zhang1( )
Institute of Nanochemistry and NanobiologyShanghai UniversityShanghai200444China
School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444China
Materials Engineering and Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneQLD4072Australia
Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLD4072Australia

Abstract

Hollow nanostructures have attracted considerable attention owing to their large surface area, tunable cavity, and low density. In this study, a unique flower-like C@SnOX@C hollow nanostructure (denoted as C@SnOX@C-1) was synthesized through a novel one-pot approach. The C@SnOX@C-1 had a hollow carbon core and interlaced petals on the shell. Each petal was a SnO2 nanosheet coated with an ultrathin carbon layer ~2 nm thick. The generation of the hollow carbon core, the growth of the SnO2 nanosheets, and the coating of the carbon layers were simultaneously completed via a hydrothermal process using resorcinol-formaldehyde resin-coated SiO2 nanospheres, tin chloride, urea, and glucose as precursors. The resultant architecture with a large surface area exhibited excellent lithium-storage performance, delivering a high reversible capacity of 756.9 mA·h·g–1 at a current density of 100 mA·g–1 after 100 cycles.

Keywords: nanosheets, anodes, carbon coating, C@SnOX@C, hollow nanostructure

References(50)

1

Todd, A. D. W.; Ferguson, P. P.; Fleischauer, M. D.; Dahn, J. R. Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods. Int. J. Energ. Res. 2010, 34, 535–555.

2

Yu, S. H.; Lee, D. J.; Park, M.; Kwon, S. G.; Lee, H. S.; Jin, A. H.; Lee, K. S.; Lee, J. E.; Oh, M. H.; Kang, K. et al. Hybrid cellular nanosheets for high-performance lithium-ion battery anodes. J. Am. Chem. Soc. 2015, 137, 11954–11961.

3

Liu, J. Y.; Chen, X.; Kim, J.; Zheng, Q. Y.; Ning, H. L.; Sun, P. C.; Huang, X. J.; Liu, J. H.; Niu, J. J.; Braun, P. V. High volumetric capacity three-dimensionally sphere-caged secondary battery anodes. Nano Lett. 2016, 16, 4501–4507.

4

Huang, B.; Li, X. H.; Pei, Y.; Li, S.; Cao, X.; Massé, R. C.; Cao, G. Z. Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small 2016, 12, 1945–1955.

5

Yang, L.; Dai, T.; Wang, Y. C.; Xie, D. G.; Narayan, R. L.; Li, J.; Ning, X. H. Chestnut-like SnO2/C nanocomposites with enhanced lithium ion storage properties. Nano Energy 2016, 30, 885–891.

6

Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.

7

Jiao, J. Q.; Qiu, W. D.; Tang, J. G.; Chen, L. P.; Jing, L. Y. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 2016, 9, 1256–1266.

8

Yang, H. X.; Qian, J. F.; Chen, Z. X.; Ai, X. P.; Cao, Y. L. Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment. J. Phys. Chem. C 2007, 111, 14067–14071.

9

Chen, W. X.; Zhang, H.; Huang, Y. Q.; Wang, W. K. A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. J. Mater. Chem. 2010, 20, 4773–4775.

10

Lou, X. W.; Li, C. M.; Archer, L. A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 2009, 21, 2536–2539.

11

Wen, Z. H.; Cui, S. M.; Kim, H.; Mao, S.; Yu, K. H.; Lu, G. H.; Pu, H. H.; Mao, O.; Chen, J. H. Binding Sn-based nanoparticles on graphene as the anode of rechargeable lithium-ion batteries. J. Mater. Chem. 2012, 22, 3300–3306.

12

Xu, W. W.; Cui, X. D.; Xie, Z. Q.; Dietrich, G.; Wang, Y. Three-dimensional coral-like structure constructed of carbon-coated interconnected monocrystalline SnO2 nanoparticles with improved lithium-storage properties. ChemElectroChem 2016, 3, 1098–1106.

13

Li, Y.; Meng, Q.; Ma, J.; Zhu, C. L.; Cui, J. R.; Chen, Z. X.; Guo, Z. P.; Zhang, T.; Zhu, S. M.; Zhang, D. Bioinspired carbon/SnO2 composite anodes prepared from a photonic hierarchical structure for lithium batteries. ACS Appl. Mater. Interfaces 2015, 7, 11146–11154.

14

Yu, C. L.; Yu, J. C.; Wang, F.; Wen, H. R.; Tang, Y. Z. Growth of single-crystalline SnO2 nanocubes via a hydrothermal route. CrystEngComm 2010, 12, 341–343.

15

Chandiran, A. K.; Comte, P.; Humphry-Baker, R.; Kessler, F.; Yi, C. Y.; Nazeeruddin, M. K.; Grätzel, M. Evaluating the critical thickness of TiO2 layer on insulating mesoporous templates for efficient current collection in dye-sensitized solar cells. Adv. Funct. Mater. 2013, 23, 2775–2781.

16

Lee, D. H.; Park, J. G.; Choi, K. J.; Kim, D. W. Preparation of brookite-type TiO2/Carbon nanocomposite electrodes for application to Li ion batteries. Eur. J. Inorg. Chem. 2008, 6, 878–882.

17

Moriguchi, I.; Hidaka, R.; Yamada, H.; Kudo, T.; Murakami, H.; Nakashima, N. A mesoporous nanocomposite of TiO2 and Carbon nanotubes as a high-rate Li-intercalation electrode material. Adv. Mater. 2006, 18, 69–73.

18

Zhang, H. J.; He, Q. Q.; Wei, F. J.; Tan, Y. J.; Jiang, Y.; Zheng, G. H.; Ding, G. J.; Jiao, Z. Ultrathin SnO nanosheets as anode materials for rechargeable lithium-ion batteries. Mater. Lett. 2014, 120, 200–203.

19

Joshi, P.; Xie, Y.; Ropp, M.; Galipeau, D.; Bailey, S.; Qiao, Q. Q. Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode. Energy Environ. Sci. 2009, 2, 426–429.

20

Moon, T.; Kim, C.; Hwang, S. T.; Park, B. Electrochemical properties of disordered-carbon-coated SnO2 nanoparticles for Li rechargeable batteries. Electrochem. Solid-State Lett. 2006, 9, A408–A411.

21

Hu, H.; Cheng, H. Y.; Li, G. J.; Liu, J. P.; Yu, Y. Design of SnO2/C hybrid triple-layer nanospheres as Li-ion battery anodes with high stability and rate capability. J. Mater. Chem. A 2015, 3, 2748–2755.

22

Li, Y.; Zhu, S. M.; Liu, Q. L.; Gu, J. J.; Guo, Z. P.; Chen, Z. X.; Feng, C. L.; Zhang, D.; Moon, W. J. Carbon-coated SnO2@C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery. J. Mater. Chem. 2012, 22, 2766–2773.

23

Zhou, M. J.; Liu, Y. C.; Chen, J.; Yang, X. L. Double shelled hollow SnO2/polymer microsphere as a high-capacity anode material for superior reversible lithium ion storage. J. Mater. Chem. A 2015, 3, 1068–1076.

24

Tian, Q. H.; Tian, Y.; Zhang, Z. X.; Yang, L.; Hirano, S. Double-shelled support and confined void strategy to improve the lithium storage properties of SnO2/C anode materials for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 18036–18044.

25

Kim, A. Y.; Kim, J. S.; Hudaya, C.; Xiao, D. D.; Byun, D.; Gu, L.; Wei, X.; Yao, Y.; Yu, R. C.; Lee, J. K. An elastic carbon layer on echeveria-inspired SnO2 anode for long-cycle and high-rate lithium ion batteries. Carbon 2015, 94, 539–547.

26

Li, Z. T.; Wang, Y. K.; Sun, H. D.; Wu, W. T.; Liu, M.; Zhou, J. Y.; Wu, G. L.; Wu, M. B. Synthesis of nanocomposites with carbon-SnO2 dual-shells on TiO2 nanotubes and their application in lithium ion batteries. J. Mater. Chem. A 2015, 3, 16057–16063.

27

Wang, J. X.; Li, W.; Wang, F.; Xia, Y. Y.; Asiri, A. M.; Zhao, D. Y. Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries. Nanoscale 2014, 6, 3217–3222.

28

Luo, B.; Qiu, T. F.; Ye, D. L.; Wang, L. Z.; Zhi, L. J. Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy 2016, 22, 232–240.

29

Gao, R. M.; Zhang, H. J.; Yuan, S.; Shi, L. Y.; Wu, M. H.; Jiao, Z. Controllable synthesis of rod-like SnO2 nanoparticles with tunable length anchored onto graphene nanosheets for improved lithium storage capability. RSC Adv. 2016, 6, 4116–4127.

30

Pan, X. Y.; Yi, Z. G. Graphene oxide regulated tin oxide nanostructures: Engineering composition, morphology, band structure, and photocatalytic properties. ACS Appl. Mater. Interfaces 2015, 7, 27167–27175.

31

Li, Y. Y.; Zhang, H. Y.; Chen, Y. M.; Shi, Z. C.; Cao, X. G.; Guo, Z. P.; Shen, P. K. Nitrogen-doped carbon-encapsulated SnO2@Sn nanoparticles uniformly grafted on three-dimensional graphene-like networks as anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 197–207.

32

Hao, B.; Yan, Y.; Wang, X. B.; Chen, G. Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast lithium storage. ACS Appl. Mater. Interfaces 2013, 5, 6285–6291.

33

Ren, L.; Liu, Y. D.; Qi, X.; Hui, K. S.; Hui, K. N.; Huang, Z. Y.; Li, J.; Huang, K.; Zhong, J. X. An architectured TiO2 nanosheet with discrete integrated nanocrystalline subunits and its application in lithium batteries. J. Mater. Chem. 2012, 22, 21513–21518.

34

Wang, Z. Y.; Sha, J. W.; Liu, E. Z.; He, C. N.; Shi, C. S.; Li, J. J.; Zhao, N. Q. A large ultrathin anatase TiO2 nanosheet/reduced graphene oxide composite with enhanced lithium storage capability. J. Mater. Chem. A 2014, 2, 8893–8901.

35

Wu, P.; Du, N.; Zhang, H.; Yu, J. X.; Qi, Y.; Yang, D. R. Carbon-coated SnO2 nanotubes: Template-engaged synthesis and their application in lithium-ion batteries. Nanoscale 2011, 3, 746–750.

36

Kong, Q. D.; Li, X. L.; Zhang, Y. B.; Hai, X.; Wang, B.; Qiu, X. Y.; Song, Q.; Yang, Q. H.; Zhi, L. J. Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. Energy Environ. Sci. 2016, 9, 906–911.

37

He, H. Y.; Kong, D. B.; Wang, B.; Fu, W.; Qiu, X. Y.; Yang, Q. H.; Zhi, L. J. Carbon network integrated SnSiOX+2 nanofiber sheathed by ultrathin graphitic carbon for highly reversible lithium storage. Adv. Energy Mater. 2016, 6, 1502495.

38

Zhao, B.; Jiang, Y.; Zhang, H. J.; Tao, H. H.; Zhong, M. Y.; Jiao, Z. Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J. Power Sources 2009, 189, 462–466.

39

Fuertes, A. B.; Valle-Vigón, P.; Sevilla, M. One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. Chem. Commun. 2012, 48, 6124–6126.

40

Tian, Q. H.; Tian, Y.; Zhang, Z. X.; Yang, L.; Hirano, S. Design and preparation of interconnected quasi-ball-in-ball tin dioxide/carbon composite containing void-space with high lithium storage properties. Carbon 2015, 95, 20–27.

41

Luo, Y. S.; Luo, J. S.; Zhou, W. W.; Qi, X. Y.; Zhang, H.; Yu, D. Y. W.; Li, C. M.; Fan, H. J.; Yu, T. Controlled synthesis of hierarchical graphene-wrapped TiO2@Co3O4 coaxial nanobelt arrays for high-performance lithium storage. J. Mater. Chem. A 2013, 1, 273–281.

42

Jahel, A.; Ghimbeu, C. M.; Darwiche, A.; Vidal, L.; Hajjar-Garreau, S.; Vix-Guterl, C.; Monconduit, L. Exceptionally highly performing Na-ion battery anode using crystalline SnO2 nanoparticles confined in mesoporous carbon. J. Mater. Chem. A 2015, 3, 11960–11969.

43

Xu, K.; Li, N.; Zeng, D. W.; Tian, S. Q.; Zhang, S. S.; Hu, D.; Xie, C. S. Interface bonds determined gas-sensing of SnO2-SnS2 hybrids to ammonia at room temperature. ACS Appl. Mater. Interfaces 2015, 7, 11359–11368.

44

Slater, B.; Catlow, C. R. A.; Gay, D. H.; Williams, D. E.; Dusastre, V. Study of surface segregation of antimony on SnO2 surfaces by computer simulation techniques. J. Phys. Chem. B 1999, 103, 10644–10650.

45

Han, X. G.; Jin, M. S.; Xie, S. F.; Kuang, Q.; Jiang, Z. Y.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties. Angew. Chem., Int. Ed. 2009, 48, 9180–9183.

46

Nam, S.; Yang, S. J.; Lee, S.; Kim, J.; Kang, J.; Oh, J. Y.; Park, C. R.; Moo, T.; Lee, K. T.; Park, B. Wrapping SnO2 with porosity-tuned graphene as a strategy for high-rate performance in lithium battery anodes. Carbon 2015, 85, 289–298.

47

Zhu, X. J.; Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ruoff, R. S. Reduced graphene oxide/tin oxide composite as an enhanced anode material for lithium ion batteries prepared by homogenous coprecipitation. J. Power Sources 2011, 196, 6473–6477.

48

Lin, J.; Peng, Z. W.; Xiang, C. S.; Ruan, G. D.; Yan, Z.; Natelson, D.; Tour, J. M. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 2013, 7, 6001–6006.

49

Liu, R. Q.; Li, D. Y.; Wang, C.; Li, N.; Li, Q.; Lü, X. J.; Spendelow, J. S.; Wu, G. Core-shell structured hollow SnO2-polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries. Nano Energy 2014, 6, 73–81.

50

Liu, S. H.; Jia, H. P.; Han, L.; Wang, J. L.; Gao, P. F.; Xu, D. D.; Yang, J.; Che, S. N. Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries. Adv. Mater. 2012, 24, 3201–3204.

File
nr-10-9-2966_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 November 2016
Revised: 19 January 2017
Accepted: 03 February 2017
Published: 18 May 2017
Issue date: September 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21471096 and 21371116), and Program for Innovative Research Team in University (No. IRT13078). We thank the Lab for Microstructure, Instrumental Analysis & Research Center, Shanghai University, for materials characterizations.

Return